Field guide to lasers [electronic resource] / Rüdiger Paschotta
- Author
- Paschotta, Rüdiger
- Additional Titles
- Lasers
- Published
- Bellingham, Wash. (1000 20th St. Bellingham WA 98225-6705 USA) : SPIE, 2008.
- Physical Description
- 1 online resource (xii, 139 pages : illustrations) : digital file
- Additional Creators
- Society of Photo-optical Instrumentation Engineers
Access Online
- Series
- Restrictions on Access
- Restricted to subscribers or individual electronic text purchasers.
- Contents
- Glossary of symbols -- Basic principles of lasers -- Principle of a laser -- Spontaneous and stimulated emission -- Optical pumping : three- and four-level systems -- Cross sections and level lifetimes -- Transition bandwidths -- Calculating laser gain -- Gain saturation -- Homogeneous vs. inhomogeneous saturation -- Spatial hole burning -- Threshold and slope efficiency -- Power efficiency -- Amplified spontaneous emission -- Characteristics of laser light -- Laser beams -- Temporal coherence of laser radiation -- Spatial coherence -- Gaussian beams -- Laser beam quality -- Brightness or radiance of laser beams -- Optical resonators -- Basic structure of an optical resonator -- Resonator modes -- Resonance frequencies -- Bandwidth and finesse of a resonator -- Stability zones of a resonator -- Unstable resonators -- Resonator design -- Waveguides -- Principle of waveguiding -- Waveguide modes -- Optical fibers -- Planar and channel waveguides -- Semiconductor lasers -- Light amplification in semiconductors -- Low-power edge-emitting laser diodes -- External-cavity diode lasers -- Broad-area laser diodes -- Diode bars -- Diode stacks -- Vertical-cavity surface-emitting lasers -- Vertical-external-cavity surface-emitting lasers., Fiber-coupled diode lasers -- Properties of diode lasers -- Quantum cascade lasers -- Solid-state bulk lasers -- Rare-earth-doped gain media -- Transition-metal-doped gain media -- Properties of host crystals -- Effective cross sections -- Phonon effects in solid-State gain media -- Quasi-three-level laser transitions -- Lamp pumping vs. diode pumping -- Side pumping vs. end pumping -- Linear vs. ring laser resonators -- Thermal effects in laser crystals and glasses -- Rod lasers -- Slab lasers -- Thin-disk lasers -- Monolithic lasers and microchip lasers -- Composite laser gain media -- Cryogenic lasers -- Beam quality of solid-state lasers -- Properties of solid-state bulk lasers -- Fiber and waveguide lasers -- Rare-earth-doped fibers -- Types of fiber laser resonators -- DBR and DFB fiber lasers -- Double-clad high-power fiber devices -- Polarization issues -- Other waveguide lasers -- Upconversion fiber lasers -- Properties of fiber lasers -- Dye lasers -- Properties of dye lasers -- Gas lasers -- Helium-neon lasers -- Argon-ion lasers -- Properties of ion lasers -- Carbon-dioxide lasers -- Properties of carbon-dioxide lasers -- Excimer lasers -- Properties of excimer lasers -- Other types of lasers., and Raman lasers -- Free-electron lasers -- Chemically and nuclear pumped lasers -- Narrow-linewidth operation -- Single-mode vs. multimode operation -- Intracavity etalons and other filters -- Examples of single-frequency lasers -- Injection locking -- Tunable lasers -- Principles of wavelength tuning -- Tunable diode lasers -- Tunable solid-state bulk and fiber lasers -- Other tunable laser sources -- Q switching -- Active vs. passive Q switching -- Gain switching -- Mode locking -- Active mode locking -- Passive mode locking -- Examples of mode-locked solid-state lasers -- Cavity dumping -- Nonlinear frequency conversion -- Frequency doubling -- Sum and difference frequency generation -- Frequency tripling and quadrupling -- Optical parametric oscillators -- Laser noise -- Forms and origins of laser noise -- Relaxation oscillations and spiking -- Noise specifications -- Schawlow-Townes linewidth -- Laser stabilization -- Laser safety -- Overview on laser hazards -- Safe working practices -- Common challenges for laser safety -- Design and development -- Designing a laser -- Laser modeling -- The development process -- Power scaling -- Equation summary -- Bibliography -- Index.
- Summary
- This Guide provides an overview on the essential types of lasers and their key properties, as well as an introduction into the most important physical and technological aspects of lasers. Apart from describing the basic principles (such as stimulated emission and the properties of optical resonators), this Guide discusses the numerous important properties of laser crystals, the impact of thermal effects on laser performance, methods of wavelength tuning and pulse generation, and laser noise. Practitioners will also gain valuable insight from remarks on laser safety and obtain new ideas about how to make the laser development process more efficient.
- Subject(s)
- Genre(s)
- ISBN
- 9780819478269 (electronic)
0819469610 (print)
9780819469618 (print) - Note
- "SPIE digital library."
AVAILABLE ONLINE TO AUTHORIZED PSU USERS. - Bibliography Note
- Includes bibliographical references (page 134) and index.
- Other Forms
- Also available in print version.
- Technical Details
- Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader.
View MARC record | catkey: 10009625