Engineered nanopores for bioanalytical applications [electronic resource] / Joshua B. Edel, Tim Albrecht
- Author
- Edel, Joshua B. (Joshua Benno)
- Published
- Norwich, N.Y. : William Andrew, 2013.
Oxford : Elsevier Science - Physical Description
- 1 online resource
- Additional Creators
- Albrecht, Tim
Access Online
- ScienceDirect: ezaccess.libraries.psu.edu
- Series
- Contents
- Machine generated contents note: ch. 1 Ion Transport in Nanopores / P. Nuttall -- 1.1.Introduction -- 1.2.Brownian motion -- 1.3.Net transport of ions-the Nemst-Planck equation and its derivation -- 1.4.The conductance of a pore with uncharged walls -- 1.4.1.Cylindrical pores -- 1.4.2.Pores with noncylindrical geometries -- 1.4.3.Access resistance -- 1.5.The effect of surface'charge -- 1.5.1.Charged surfaces in solution -- 1.5.2.The conductance of nanopores with charged inner walls -- 1.5.3.The ζ-potential of colloids and charged particles -- 1.5.4.Electroosmosis-fluid motion close to a charged wall in response to an external electric field -- 1.6.Particle translocation through nanopores-the model of deBlois and Bean -- 1.6.1.Small spheres solution -- 1.6.2."Broad range" solution -- References -- ch. 2 DNA Translocation / Ulrich F. Keyser -- 2.1.Introduction -- 2.2.Physics of a polyelectrolyte inside a nanopore -- 2.2.1.Electrostatic potential around a charged surface -- 2.3.Electroosmotic flow inside a cylindrically nanopore -- 2.4.DNA inside a nanopore -- 2.4.1.Free translocation -- 2.5.Capture rate and probability of successful translocation -- 2.5.1.Dominating effects -- 2.5.2.Discussion of successful translocation -- 2.6.Stalling DNA in a nanopore -- 2.6.1.Silicon nitride nanopore with optical tweezers -- 2.7.Stalling DNA in nanocapillaries -- 2.7.1.Electrostatic characterization -- 2.7.2.Force measurements inside glass capillaries -- References -- ch. 3 Instrumentation for Low-Noise High-Bandwidth Nanopore Recording / Vincent Tabard-Cossa -- 3.1.Introduction -- 3.2.Components of a nanopore setup and their integration -- 3.2.1.Nanopore support structure -- 3.2.2.Fluidic cell -- 3.2.3.Ag/AgCl electrodes -- 3.2.4.Noise pickup -- 3.3.Low-current measurement techniques -- 3.3.1.Shunt resistor -- 3.3.2.Resistive feedback -- 3.3.3.Capacitive feedback -- 3.4.Bandwidth and background noise -- 3.4.1.Low-frequency spectrum -- 3.4.2.High-frequency spectrum -- 3.5.Noise filtering, sampling, and resolution -- 3.6.Outlook: pushing the detection limit -- Ackowledgements -- References -- ch. 4 Biological Pores on Lipid Bilayers / Joseph W.F. Robertson -- 4.1.Introduction -- 4.2.Formation: overview and experimental protocols -- 4.3.Pore characterization: overview and experimental protocols -- 4.3.1.Electrophysiological approaches -- 4.3.2.High-resolution structures -- 4.4.Bacterial pore-forming toxins -- 4.4.1.α-Hemolysin -- 4.4.2.Anthrax protective antigen -- 4.5.Bacterial porins -- 4.5.1.Outer membrane porins -- 4.5.2.Mycobacterium smegmatis: MspA -- 4.6.Pore-forming peptides -- 4.6.1.Alamethicin -- 4.6.2.Gramicidin -- 4.7.Conclusion -- References -- ch. 5 Solid-State Nanopore Fabrication / Mariam Ayub -- 5.1.Introduction -- 5.2.Overview of materials -- 5.3.Fabrication methods -- 5.3.1.Deposition of silicon nitride films -- 5.3.2.Photolithography -- 5.3.3.Etching -- 5.3.4.Pore milling -- 5.3.5.Ion track etching -- 5.4.Control of pore size -- 5.4.1.FIB milling -- 5.4.2.Scanning Transmission Electron Microscopy (STEM) milling -- 5.4.3.Ion track etching -- 5.5.Surface modification -- 5.5.1.Inorganic and metallic materials -- 5.5.2.Silane and thiol-based modifications -- 5.5.3.Biological modifications -- References -- ch. 6 Case Studies Using Solid-State Pores / Min Jun Kim -- 6.1.Introduction -- 6.2.DNA and RNA translocations -- 6.3.DNA unzipping -- 6.4.Optical detection -- 6.5.DNA sequencing -- 6.5.1.Direct ionic current measurement -- 6.5.2.Hybridization assisted nanopore sequencing (HANS approach) -- 6.5.3.Optical readout using converted DNA -- 6.5.4.Transverse electron tunneling -- 6.6.Protein analysis with solid-state nanopores -- 6.7.Conclusion -- References.
- Summary
- This book is the first to explore both the development and application of nanopores with practical analytical applications as the primary focus. These nanoscale analytical techniques have exciting potential as they can be used in applications such as DNA sequencing, DNA fragment sizing, DNA/protein binding, and protein/protein binding. Importantly this book aims to provide a solid professional reference on nanopores for readers in both academia and industry, and engineering and biomedical fields. In addition, the aim of this book is to share with the scientific and engineering communities the experimental and fabrication methods necessary to carry out nanopore-based experiments for developing new devices. Includes application case studies for detection, identification and analysis of biomolecules and related functional nanomaterials Introduces the techniques of manufacturing solid state materials with functional nanopores Explains the use of nanopores in DNA sequencing and the wider range of applications from environmental monitoring to forensics.
- Subject(s)
- Genre(s)
- ISBN
- 9781437734744 (electronic bk.)
143773474X (electronic bk.)
9781437734737
1437734731 - Note
- AVAILABLE ONLINE TO AUTHORIZED PSU USERS.
View MARC record | catkey: 10769390