Transport Mechanisms in Membrane Separation Processes [electronic resource] / by J. G. A. Bitter
- Author
- Bitter, J. G. A.
- Published
- Boston, MA : Springer US : Imprint: Springer, 1991.
- Physical Description
- XV, 219 pages : online resource
- Additional Creators
- SpringerLink (Online service)
Access Online
- Series
- Contents
- 1. Introduction -- 2. Types of Membrane Separation Processes, Mechanisms of Separation -- 2.1. Porous Membranes -- 2.2. Liquid Membranes -- 2.3. Tight Membranes -- 2.4. Selection of Membrane Separation Processes and Mechanisms -- 3. Survey of Membrane Separation Models -- 3.1. Irreversible Thermodynamics -- 3.2. Preferential Sorption-Capillary Flow Theory -- 3.3. The Solution-Diffusion Model -- 3.4. Viscous Flow Models; Accounting for Imperfections -- 3.5. Models for the Separation of Gas (Vapor) Mixture -- 3.6. Concentration Polarization -- 3.7. Blocking, Fouling, and Poisoning -- 4. Comparison of Membrane Permeation Models -- 4.1. Liquid Separations -- 4.2. Gas Separations -- 4.3. A New Permeation Model for Gases and Liquids -- 5. Basic Diffusion Equation -- 5.1. Introduction -- 5.2. The Maxwell-Stefan Equation -- 5.3. Equation of Darken, Prager, and Crank -- 5.4. The Modified Maxwell-Stefan Equation -- 6. Solubility of Permeants in Semi-Crystalline and Crosslinked Polymers -- 6.1. Solubility of Liquids in Polymers -- 6.2. Modified Equation for the Partial Molar Entropy of Mixing -- 6.3. Partial Molar Enthalpy of Mixing -- 6.4. The Modified Flory-Huggins Equation -- 6.5. Solubility of Gases in Polymers -- 6.6. The Modified Flory-Huggins Equation for Gases -- 7. Comparison and Experimental Check of the Solubility Equations -- 7.1. Swelling of Polyolefins -- 7.2. Swelling of Natural Rubber in Binary Solvent Mixtures -- 7.3. Swelling of Cellulose Diacetate in Mixtures of Ethanol and Water -- 7.4. Solubility of N2O, CO2, and C2H4 in PMMA -- 7.5. Solubility of CO2 and CH4 in Polysulfone -- 8. Prediction of Diffusivity in Multi-Component Mixtures -- 8.1. Basic Diffusivity -- 8.2. Concentrated Solute Diffusivity -- 8.3. Estimation of Diffusion Coefficients -- 8.4. Mixture Viscosity -- 8.5. Prediction of Diffusivity from Mixture Viscosity -- 9. New Permeability Equations -- 9.1. Introduction -- 9.2. Effect of Crystallinity and Swelling on Permeability -- 9.3. Specific Diffusion Rate -- 9.4. Simplified Calculation Procedure of Membrane Permeation -- 9.5. Stress Distributions Inside Membranes -- 9.6. Effect of Pressure Gradients Inside Membranes on Permeation -- 9.7. Permeability Equation for Gases -- 10. Permeation Experiments (Program and Procedures) -- 10.1. Membranes Tested -- 10.2. Pervaporation Experiments -- 10.3. Reverse Osmosis Experiments -- 10.4. Dialysis Experiments -- 11. Results of Permeation Experiments -- 11.1. Effect of Permeation Time on Flux and Selectivity -- 11.2. Effect of Composition and External Driving Force on Flux and Selectivity -- 12. Experimental Check of the Permeation Equations -- 12.1. Concentration Dependence of the Mean Diffusivity -- 12.2. Prediction of Selectivity in Pervaporation -- 12.3. Comparison of Calculated and Measured Permeation in Reverse Osmosis -- 12.4. Comparison of Calculated and Measured Permeation by Dialysis -- 12.5. Mutual Effect of Hydrocarbons on their Permeability -- 12.6. Pervaporation of Ethyl Alcohol/Water Mixtures through Cellulose Diacetate Membranes -- 12.7. Permeability of Gases in Polysulfone -- 12.8. Permeability of Mixtures of CO2 and CH4 in Polyisoprene -- 13. Optimum Choice of Polymers for Membrane Preparation -- 14. Discussion and Conclusions -- Appendix I. Irreversible Processes Near Equilibrium -- I.1. Introduction -- I.2. Theory of Near-Equilibrium Processes -- I.3. Entropy Production in Irreversible Flow Processes -- I.4. Rate of Entropy Production; Dissipation Function -- I.5. Phenomenological Equations -- I.6. Requirements of the Phenomenological Coefficients -- I.7. Application of IT/OR/ORR in Membranes; The Kedem-Katchalsky Mode -- Appendix II. Derivation of the Concentration Polarization Equation of Gases -- II.1. Continuity Equation -- II.2. Transport Equation for Tight Membranes -- II.3. Experiments and Results -- Appendix III. Derivation of The Maxwell-Stefan Equation -- Appendix IV. Derivation of the Modified Maxwell-Stefan Equation -- Appendix V. Theory of the Entropy of Mixing -- V.1. Derivation of the Entropy Equation -- V.2. Entropy of Elastic Strain -- Appendix VI. Partial Molar Mixing Enthalpy of Multicomponent Mixtures -- Appendix VII. Solubility Equation for Gases in Polymers -- Appendix VIII. Evaluation and Estimation of Swelling Parameters -- VIII.1. Crystallinity -- VIII.2. Coordination Number -- VIII.3. Partial Molar Volume -- VIII.4. Partial Molar Heat of Mixing -- VIII.5. Activity of Permeants and Permeant Mixtures -- VIII.6. Elastic Strain Factor -- Appendix IX. Self-Diffusivity in Multicomponent Mixtures -- Appendix X. Viscosity of Multicomponent Mixtures -- Appendix XI. Estimation of the Geometric Diffusion Resistance -- Appendix XII. Approximate Solution of the General Differential Equation of Membrane Permeation -- Appendix XIII. Derivation of the Gas Permeation Equation -- List of Symbols -- References.
- Subject(s)
- ISBN
- 9781461536826
- Digital File Characteristics
- text file PDF
- Note
- AVAILABLE ONLINE TO AUTHORIZED PSU USERS.
- Part Of
- Springer eBooks
View MARC record | catkey: 11944460