The chemistry of bio-based polymers / Johannes Karl Fink, Montanuniversität Leoben, Austria
- Author:
- Fink, Johannes Karl
- Published:
- Beverly, MA : Scrivener Publishing ; Hoboken, New Jersey : Wiley, [2014]
- Physical Description:
- 1 online resource (xiv, 338 pages)
- Access Online:
- ezaccess.libraries.psu.edu
- Contents:
- Machine generated contents note: 1.An Overview of Methods and Standards -- 1.1.History of Biodegradable Plastics -- 1.2.Green Chemistry -- 1.2.1.Genetic Engineering -- 1.3.Commercial Situation -- 1.4.Environmental Situation -- 1.4.1.Problems with Biobased Composites -- 1.4.2.Biodegradation -- 1.5.Properties of Biodegradable Polymers -- 1.6.Special Methods of Synthesis -- 1.6.1.Conventional Methods -- 1.6.2.Click Chemistry -- 1.6.3.Enzymatic Polymerization -- 1.6.4.Chemoenzymatic Polymerization -- 1.6.5.Vine-twining Polymerization -- 1.6.6.Bacterial Synthesis -- 1.7.Biodegradability Standards -- 1.7.1.Guidelines for the Development of Standards -- 1.7.2.Specifications for Compostable Plastics -- 1.7.3.Ultimate Anaerobic Biodegradability -- 1.7.4.Aerobic Biodegradability -- 1.7.5.Biodegradability of Plastics in Sea water -- 1.8.Test of the Biological Origin -- References -- pt. I Bio-based Polymers Degradation and Chemistry -- 2.Vinyl Based Polymers -- 2.1.Polyolefins -- 2.1.1.Degradability -- 2.1.2.Degradation Mechanism -- 2.1.3.Pro-degradants -- 2.2.Poly(styrene) Elastomers -- 2.3.Poly(vinyl alcohol) -- 2.3.1.Plasticized Compositions -- 2.3.2.Hydrogels -- 2.4.Poly(vinyl butyral) -- 2.4.1.Blends with Poly(3-hydroxybutyrate) -- 2.4.2.Blends with Poly(lactic acid) -- 2.4.3.Paper coatings -- 2.4.4.Fibers -- 2.4.5.Membranes -- 2.4.6.Solar Cells -- 2.4.7.Adhesive for Safety Glass -- References -- 3.Acid and Lactone Polymers -- 3.1.Poly(lactic acid) -- 3.1.1.Production Processes for Poly(lactic acid) -- 3.1.2.Surface Modification of Fibers -- 3.1.3.Influence of Fabrication Methods and Kenaf Fiber Length -- 3.1.4.Kenaf fibers for Reinforcement of PP -- 3.1.5.Reinforced Composites -- 3.1.6.Laminated Composites from Kenaf Fiber -- 3.1.7.Copolyesters -- 3.1.8.Transparent Crystalline Poly(lactic acid) -- 3.1.9.Laminated Biocomposites -- 3.2.Poly(glycolic acid)s -- 3.2.1.Glycolic acid -- 3.2.2.Polymers, Copolymers, and Blends -- 3.2.3.Condensation Polymer of Glycerol -- 3.3.Butyrolactone-based Vinyl Monomers -- 3.3.1.Tulipalin A -- 3.3.2.a-Methylene-γ-valerolactone -- 3.4.Poly(caprolactone) -- References -- 4.Ester and Amide Polymers -- 4.1.Poly(ester)s -- 4.1.1.Methyl-10-undecenoate -- 4.1.2.Poly(butylene adipate) Copolyesters -- 4.1.3.Poly(hydroxyalkanoate)s -- 4.1.4.Poly(hydroxybutyrate) -- 4.1.5.Poly(hydroxyvalerate) -- 4.1.6.Poly(3-hydroxyhexanoic acid) -- 4.1.7.Poly(β-hydroxyoctanoate) -- 4.1.8.Poly(γ-glutamic acid) -- 4.1.9.Poly(butylene succinate) -- 4.1.10.Dianhydrohexitols based Polymers -- 4.1.11.Aliphatic-Aromatic Copolyesters -- 4.1.12.Succinate Based Polyesters -- 4.1.13.Sebacate Based Polyesters -- 4.1.14.Unsaturated Polyesters -- 4.1.15.Sulfonated Polyesters -- 4.2.Plant oil-based Biopolymers -- 4.2.1.Plant Oils with Acrylic Moities -- 4.2.2.Plant Oils with Phosphorus Moities -- 4.2.3.Vanillin Based Monomers -- 4.2.4.Vegetable oil Thermosets -- 4.3.Poly(amide)s -- 4.3.1.Soy Based Bio-plastic and Chopped Industrial Hemp -- 4.3.2.Soy bean based Composites -- References -- 5.Carbohydrate Related Polymers -- 5.1.Starch -- 5.1.1.Starch Modification -- 5.1.2.Starch Granules -- 5.1.3.Baked Foams -- 5.1.4.High Starch Polymer -- 5.1.5.Destructurization of Natural Starch -- 5.1.6.Melt Processable Starch -- 5.1.7.Wet-spinning Processes for Starch -- 5.1.8.Pre-gelled Starch Suspensions -- 5.1.9.Processing of Natural Starch -- 5.1.10.Granular Starch as Additive to Conventional Polymers -- 5.2.Cellulose -- 5.2.1.Liquid Crystalline Derivatives -- 5.2.2.Cellulose Fibers -- 5.2.3.Modified Cellulose Fibers -- 5.3.Cellulose ethers -- 5.4.Cellulose esters -- 5.5.Cellulose ether esters -- 5.6.Lignin -- 5.7.Biodegradable Nanocomposites -- 5.7.1.Oxidation of Spruce and Pulps -- 5.7.2.Modified Cellulose Nanofibers -- 5.7.3.Biobased Epoxy Nanocomposites -- 5.8.Chitin -- References -- 6.Other Polymer Types -- 6.1.Terpenes -- 6.1.1.Grafted Terpene -- 6.1.2.Thiol-Ene Additions -- 6.1.3.Pinenes -- 6.2.Poly(urethane)s -- 6.2.1.Poly(ester urethane)s -- 6.3.Cationic Lipopolymers -- 6.4.Plastics from Bacteria -- 6.4.1.Biodegradability of Poly(hydroxyalkanoate) -- 6.5.Biobased Epoxy Resins -- 6.5.1.Poloxamers -- 6.6.Phosphate Containing Polymers -- 6.7.Polyketals -- 6.8.Bio-rubber -- 6.9.Collagen -- 6.10.Pyridinium Modified Polymers -- 6.11.Commercial Biodegradable Polymers -- References -- pt. II Applications -- 7.Packaging and Food Applications -- 7.1.Packaging -- 7.1.1.Packaging Materials -- 7.1.2.Lightweight Compostable Packaging -- 7.1.3.Laminate Coatings -- 7.1.4.PLA Resins -- 7.1.5.Starch Compositions -- 7.1.6.Heat-sealable Paperboard -- 7.1.7.Packages with Corrosion Inhibitor -- 7.1.8.Multi-wall Package -- 7.1.9.Cushioning Nuggets -- 7.1.10.Fluid Containers -- 7.2.Fibers and Nets -- 7.2.1.Multicomponent Fiber -- 7.2.2.Biodegradable netting -- 7.3.Foams -- 7.3.1.Foamed Articles -- 7.3.2.Blends -- 7.3.3.Starch-polyester Graft Copolymer -- 7.3.4.Foamed Gelling Hydrocolloids -- 7.4.Biodegradable Hot melt Adhesive Compositions -- 7.5.Food Applications -- 7.5.1.Chewing Gum -- References -- 8.Medical Applications -- 8.1.Drug Delivery -- 8.1.1.Acacia -- 8.1.2.Carrageenan -- 8.1.3.Cellulose -- 8.1.4.Chitosan -- 8.1.5.Gellan Gum -- 8.1.6.Guar Gum -- 8.1.7.Hyaluronic Acid Derivatives -- 8.1.8.Khaya Gum -- 8.1.9.Locust Bean Gum -- 8.1.10.Pectin -- 8.1.11.Xanthan Gum -- 8.1.12.Electrospinning -- 8.1.13.Drug Release from Electrospun Fibers -- 8.2.Tissue Engineering -- 8.2.1.Scaffolds for Tissue Engineering -- 8.3.Tissue Markers -- 8.4.Hydrogels -- 8.5.Microporous Materials -- 8.6.Implants -- 8.6.1.Inflammatory Problems with Implants -- 8.6.2.Eye Implants -- 8.6.3.Thermosetting Implants -- 8.6.4.Neurotoxin Implants -- 8.6.5.Water Soluble Glass Fibers -- 8.7.Shape Memory Polymers -- 8.7.1.Shape Memory Polyesters -- 8.8.Stents -- 8.8.1.Surface Erosion -- 8.8.2.Tubular Main Body -- 8.8.3.Multilayer Stents -- 8.9.Thermogelling Materials -- 8.10.Wound Dressings -- 8.11.Bioceramics -- 8.12.Conjugates -- References -- 9.Personal Care and Sanitary Goods -- 9.1.Breathable Biodegradable Hot Melt Composition -- 9.2.Sanitary Goods -- 9.3.Superabsorbent Materials -- References -- 10.Miscellaneous Applications -- 10.1.Flooring Materials -- 10.2.Abrasives and Polishing Compositions -- 10.2.1.Cleansers -- 10.2.2.Polishing Pads -- 10.3.Lubricants -- 10.4.Renewable Cards -- 10.5.Biodegradable Irrigation Pipe -- 10.6.Thermosensitive Material -- 10.7.Biodegradable scale inhibitors -- 10.7.1.Phosphorus-Containing Polymer -- 10.8.Nanocomposites -- 10.9.Molded Articles from Fruit Residues -- 10.10.Fluorescent Biodegradable Particles -- 10.11.Test Cylinder Mold for Testing Concrete -- 10.12.Flexographic Inks -- 10.13.Audio Systems -- 10.14.Automotive Uses -- 10.15.Green Hot Melt Adhesives -- 10.16.Mechanistic Studies -- 10.16.1.Olefin Isomerization -- References -- 11.Biofuels -- 11.1.Xenobiotics -- 11.2.Biopolymers -- 11.2.1.Poly(l-lactide) -- 11.3.Bioethanol -- 11.3.1.Pretreatment Methods -- 11.3.2.Cellulases and Hemicellulases -- 11.3.3.Production from Starch -- 11.3.4.Production from Lignocellulose -- 11.3.5.Production from Lichenan -- 11.4.Biobutanol and Biobutanediol -- 11.5.Biodiesel -- 11.5.1.Production from Microalgae Beats -- 11.5.2.Improvement of Diesel Fuel Properties by Terpenes -- References.
- Summary:
- "Because of the recent explosion of interdisciplinary research in renewable polymers, the knowledge base is scattered and it is now timely to have an overview from a respected chemist and successful author. The book focuses on biopolymers as well as low molecular compounds that can be synthesized from renewable polymers. After introducing general aspects of the field, the subsequent chapters then look at the chemistry of biodegradable polymeric types sorted by their chemical compounds, including the synthesis of low molecular compounds. The factors influencing degradation and biodegradation of polymers for food packaging in various environments is detailed at length. The medical applications covered concentrate on controlled drug delivery, temporary prostheses, and scaffolds for tissue engineering. The author then turns his attention to renewable resources for fabricating biofuels and argues for localized biorefineries as biomass feedstocks are more efficiently handled locally"--
- Subject(s):
- ISBN:
- 9781118837283 (electronic bk.)
1118837282 (electronic bk.)
9781118837269 (electronic bk.)
1118837266 (electronic bk.)
9781118837214 (electronic bk.)
1118837215 (electronic bk.)
9781118837252 (hardback)
1306491169 (ebk)
9781306491167 (ebk) - Note:
- AVAILABLE ONLINE TO AUTHORIZED PSU USERS.
- Bibliography Note:
- Includes bibliographical references and index.
View MARC record | catkey: 12352819