Materials used in new generation vehicles [electronic resource] : supplies, shifts, and supporting infrastructure
- Published:
- Washington, D.C. : United States. Dept. of Energy, 1997.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description:
- 62 pages : digital, PDF file
- Additional Creators:
- Oak Ridge National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- The Partnership for a New Generation of Vehicles (PNGV) program intends to develop new designs for automobiles that will reduce fuel consumption by two thirds but otherwise have price, comfort, safety, and other measures of performance similar to the typical automobile now on the market. PNGV vehicle designs are expected to substitute lightweight materials, such as aluminum, magnesium, carbon-reinforced polymer composites, glass-reinforced polymer composites, and ultra- light steel, for heavier materials such as steel and iron in automobile components. The target mass of a PNGV vehicle is 1,960 pounds, as compared to the average current vehicle that weights 3,240 pounds. Other changes could include the use of different ferrous alloys, engineering changes, or incorporation of advanced ceramic components. Widespread adoption of these vehicle designs would affect materials markets and require concurrent development and adoption of supporting technologies to supply the materials and to use and maintain them in automobiles. This report identifies what would be required to bring about these changes and developments in materials substitution; identifies reasons that might make these substitutions difficult to accomplish within the overall objectives and timetable of the PNGV program; and identifies any issues arising from the substitution that could prompt consideration of policies to deal with them. The analysis in this paper uses scenarios that assume the production of new generation vehicles will begin in 2007 and that their market share will increase gradually over the following 25 years. The scenarios on which the analysis is based assume a maximum substitution of each potential replacement material considered. This maximum substitution of individual materials (i.e., the amount of replacement material by weight that would be added to the baseline vehicle`s composition) is as follows: ULSAB (high strength steel), 298 lbs.; glass-reinforced composites, 653 lbs.; carbon-reinforced composites, 379 lbs.; aluminum, 926 lbs.; and magnesium, 216 lbs. The substitutions (and the steel and iron they replace) are multiplied by the number of new generation vehicles produced on an annual basis out to 2030 to determine the total quantity of material used in new generation vehicles and the quantity of steel that would be displaced. We identified six stages in the life cycle of materials--mining or extraction of resources; smelting or other processing to produce the material from the resource; producing components from the material; assembling the components into vehicles, using, maintaining, and repairing vehicles; and disposing of the vehicle, including any recycling of materials for automotive or other use--and identified what might be required to supply and use the substitute materials at different life cycle stages. The variables considered are the mineral or material supply, the capital and equipment (including necessary capacity, technical changes, cost, and location), labor and employment, energy, material complements, and environmental emissions and impacts. The analysis shows that raw materials to produce each of the replacement materials are sufficiently available, and adequate mining or extraction capacity exists for each. However, challenges are possible at the material production stage for three of the four materials. For aluminum and magnesium the difficulties are associated with requirements for significant new production capacity, necessary for aluminum because new production equipment will be needed to produce the material in a cost-effective manner and for magnesium because current production capacity is inadequate. The required capacity investment for magnesium to meet demand in 2030 is $13.1 billion. Both materials also would sharply increase energy requirements, and both industries would likely develop mostly--if not entirely--outside the United States. To produce the carbon-based fiber to meet PNGV demand in 2015, an en...
- Report Numbers:
- E 1.99:ornl/tm--13491
ornl/tm--13491 - Subject(s):
- Other Subject(s):
- Note:
- Published through SciTech Connect.
08/01/1997.
"ornl/tm--13491"
"DE98005602"
Das, S.; Schexnayder, S.M.; Curlee, T.R. - Funding Information:
- AC05-96OR22464
View MARC record | catkey: 13599264