Hematopoietic tissue repair under chronic low daily dose irradiation [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 1994.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 6 pages : digital, PDF file
- Additional Creators
- Argonne National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). We have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3−26.3 cGy d{sup −1}). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup (1), the failure to augment basic m-pair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments particularly marked within erythroid compartments. that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccomodated and either prone- or not prone to ML, subgroup 2 & 3 appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high- tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity.
- Report Numbers
- E 1.99:anl/cmb/cp--82396
E 1.99: conf-9407154--1
conf-9407154--1
anl/cmb/cp--82396 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
12/01/1994.
"anl/cmb/cp--82396"
" conf-9407154--1"
"DE95004129"
""
COSPAR `94,Hamburg (Germany),11-21 Jul 1994.
Seed, T.M. - Funding Information
- W-31109-ENG-38
View MARC record | catkey: 13802756