The Global Genome Question [electronic resource] : Microbes as the Key to Understanding Evolution and Ecology
- Published
- Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004.
- Physical Description
- 24 pages : digital, PDF file
- Additional Creators
- United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- A colloquium was convened in Longboat Key, Florida, in October 2002, by the American Academy of Microbiology to discuss the role of genomic techniques in microbiology research. Research professionals from both academia and industry met to discuss the current state of knowledge in microbial genomics. Unanswered questions that should drive future studies, technical challenges for applying genomics in microbial systems, and infrastructure and educational needs were discussed. Particular attention was focused on the great potential of genomic approaches to advance our understanding of microbial communities and ecosystems. Recommendations for activities that might promote and accelerate microbial genome science were identified and discussed. Microbiology has always advanced in tandem with new technologies. Beginning with the first observations of microscopic organisms with early microscopes in the 17th century, the tools and methods for studying microbes have continually evolved. Slowly at first, and now with startling speed, scientists have developed increasingly complex and informative tools for analyzing the functions, interactions, and diversity of microorganisms. Today, genomic technologies are revolutionizing microbiology. Genomics employs all or part of the genome to answer questions about an organism and represents a generic tool that can be used to dissect any or all living cells. In this report, the term ''genomics'' includes structural genomic methods that focus on the determination of genomic sequence and higher order structural features, as well as functional genomic methods, which focus on the activities and products encoded by the genome. To date, microbial genomics has largely been applied to individual, isolated microbial strains, with the results extrapolated to the wider world of microbial diversity. We are now presented with an opportune moment to move beyond studies of single isolates and to apply genome sciences directly to the study of microbial communities. It is now possible to adapt genomic tools and approaches to more realistic models of genome evolution and ecology involving natural microbial communities. Microbial communities are formed by organized groups of microbial species, each having different, often complementary functions or activities. In aggregate, the microbial community has emergent properties greater than the sum of its individual members. Outside the laboratory, virtually all microorganisms exist in complex assemblages, in which they exchange genetic material, nutrients, and biochemical signals with one another. While analysis of individual strains has been a highly profitable enterprise, greater strides can now be made by focusing attention on microbial communities. These are the entities that encompass the bulk of microbial interactions, evolutionary processes, and biogeochemical activities, with resulting immense impacts on human health and the entire planetary biosphere. The natural microbial world can be viewed as a landscape of genes and genome ecology, in which organisms exchange genetic information and co-evolve with one another, shaping themselves and the biosphere over time.
- Report Numbers
- E 1.99:825390
- Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
04/04/2004.
The Global Genome Question, Longboat Key, FL (US), 10/11/2002--10/13/2002.
Merry R. Buckley.
American Society for Microbiology (US)
(US) - Funding Information
- FG02-02ER63406
View MARC record | catkey: 13810666