Collaborative computing for gene mapping [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy, 1993.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description:
- 9 pages : digital, PDF file
- Additional Creators:
- Los Alamos National Laboratory
United States. Department of Energy
United States. Department of Energy. Office of Scientific and Technical Information - Access Online:
- www.osti.gov
- Summary:
- The authors are investigating mechanisms for utilizing advances in high performance computing and alignment algorithm development which will allow the analysis of newly acquired sequence data in real time and eliminate the global alignments problems associated with existing datasets. The presence of repetitive DNA sequences in the human genome complicates the process of homology comparisons. Three approaches have been used to address this problem. Two of the approaches involve elimination of the repetitive elements either by removing the repetitive element from the query or scoring words due to the repetitive elements poorly or not at all during the alignment process. The approach involves identification of the repetitive element in the query by comparison to a known repeat set prior to comparison to the large database. Any homologies returned which are contained within a previously identified repeat are ignored unless the homology exceeds set quality parameters. The homologies which extend outside the bounds of the repetitive element are reported. Using this approach the repeat is not eliminated from larger homologous units which may exist, and is returned as part of the overall homology result. The method the authors utilize in the laboratory for gene mapping is fluorescent in situ hybridization (FISH). This approach involves labelling a gene segment with a fluorescent molecule and then mixing the labeled gene segment (probe) with chromosomes.
- Subject(s):
- Note:
- Published through SciTech Connect.
12/01/1993.
"la-ur--93-4210"
" conf-9308192--1"
"DE94003932"
Real time applications of high performance computation for biological imaging,Urbana, IL (United States),Aug 1993.
Gatewood, J.M. - Funding Information:
- W-7405-ENG-36
View MARC record | catkey: 13811813