Actions for QCD and Light-Front Dynamics [electronic resource].
QCD and Light-Front Dynamics [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2011.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 24 pages : digital, PDF file
- Additional Creators
- SLAC National Accelerator Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its β-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
- Report Numbers
- E 1.99:slac-pub-14275
slac-pub-14275 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
01/10/2011.
"slac-pub-14275"
"arXiv:1010.4962"
Invited talk at Light Cone 2010: Relativistic Hadronic and Particle Physics (LC2010), Valencia, Spain, 14-18 Jun 2010.
Brodsky, Stanley J.; de Teramond, Guy F. - Funding Information
- AC02-76SF00515
View MARC record | catkey: 13822530