Actions for Macroscopic Superlattices of CdSe Colloidal Nanocrystals [electronic resource] : Appearance and Optical Properties
Macroscopic Superlattices of CdSe Colloidal Nanocrystals [electronic resource] : Appearance and Optical Properties
- Published
- Washington, D.C. : United States. Dept. of Energy, 2004.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- page(s) pages 1,321-1,324 : digital, PDF file
- Additional Creators
- Lawrence Livermore National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Two and three dimensional assemblies of colloidal nanocrystals (NCs) have been of great interest during recent years [1-3]. While size-dependent optical and electronic properties of isolated particles are particularly important for fundamental research, studies of their ordered assemblies provide a transition path to the engineering of materials and devices for future practical applications. Assemblies of NCs of different materials, such as semiconductors, metals and metal oxides, have been reported in the literature during recent years [4-7]. However, perfect, crystallographic-ordered assemblies of colloidal NCs or colloidal superlattices (SLs) have been observed so far only using transmission (TEM) and scanning electron microscopy (SEM) in a very small scale of a few hundred nanometers, while macroscopic characterization and device application demonstrations have been performed mainly on amorphous, randomly packed powders of NCs [8, 9]. To make SLs available for traditional methods of characterization, they should be obtained in a sufficiently large size. For colloidal NCs soluble in variety of solvents, simple growth from solution seems to be an appropriate choice to produce SLs. In solution, NCs act as large molecules that, as shown previously [1, 8], can form nanoscale ordered assemblies by the classical Frank-Cabrerra mechanism [10] of crystal growth. It is, however, not clear how such ordered structures will look at larger scale. Will they grow as 3-D faceted shapes of extended sizes, or will they form poly-domain structures with local crystallographic arrangement? Taking into account the complex nature of colloidal NCs consisting of relatively big crystalline cores surrounded by large organic surfactant molecules, it is hard to imagine easy formation of large-scale faceted SLs. Spontaneous growth of perfectly faceted crystals requires precisely uniform size, shape and orientation of building units within the crystallographic lattice. This makes the distribution of sizes and shapes that always exist in NCs one more reason to prevent faceting. At the same time, formation of faceted SLs from colloidal solutions has been reported in a number of works [1, 6, 8, 11]. Two recent publications in this journal [12,13] were devoted to the case of CdSe that, for its well-known properties, can be considered as a model NC material. These publications stated that perfectly shaped hexagonal platelets obtained from a toluene solution of CdSe NCs were faceted SLs. The size of the crystals (up to 200 {micro}m) was large enough to observe them in an optical microscope, but apparently too small for the separation and characterization by macroscopic techniques. Therefore no optical characterization was presented, and the conclusion was made on the basis of TEM images of small fragments that did not show any visible faceting. It is important to say here that, despite the fact that the authors used a special triple-solvent ''controlled oversaturation technique'', formation of these hexagonal platelets is not rare in CdSe NC solutions and had been discussed previously in the connection with SL formation [1]. In our experiments with CdSe NCs, we frequently observed them to form spontaneously in relatively large number and size. Such common and easy formation of these crystals stimulated us to take a closer look at their nature. Here we present the results of our investigations, together with new attempts to obtain micron-scale SLs of CdSe NCs suitable for direct characterization by combination of electron microscopy with macroscopic techniques, such as optical polarization microscopy, x-ray diffraction, and photoluminescence spectroscopy.
- Report Numbers
- E 1.99:ucrl-jrnl-203438
ucrl-jrnl-203438 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
03/25/2004.
"ucrl-jrnl-203438"
Advanced Materials 17 FT
Zaitseva, N; Saw, C; Galli, G; Leon, F; Gerion, D; Manna, L. - Funding Information
- W-7405-ENG-48
View MARC record | catkey: 13824987