Actions for Radium-226 and low pH in groundwater due to oxidation of authigenic pyrite; Savannah River Site, South Carolina [electronic resource].
Radium-226 and low pH in groundwater due to oxidation of authigenic pyrite; Savannah River Site, South Carolina [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2005.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Additional Creators
- United States. Department of Energy. Savannah River Site, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- The origin of elevated radium-226 in groundwater beneath a sanitary landfill at the Savannah River Site (SRS) was investigated. Nearly one hundred monitoring wells are developed in the Steed Pond Aquifer (SPA), which consists of 100-150 ft of Coastal Plain sand, iron oxides, and minor clay. Wells screened in the upper and middle portions of the aquifer have average Ra-226 between 0.5 and 2.5 pCi/L, and average pHs above 4.7. However, wells screened near the base of the aquifer exhibit higher average Ra-226 concentrations of 2.5 to 4.6 pCi/L, with some measurements exceeding the MCL of 5 pCi/L, and show average pHs of 4.1 to 4.7. These wells are not downgradient of the landfill, and are not impacted by landfill leachate. The Crouch Branch Confining Unit (CBCU) underlies the aquifer, and is composed partly of reduced gray/brown clay with lignite and authigenic pyrite. Gamma ray logs show that the SPA has low gamma counts, but the CBCU is consistently elevated. Groundwater with high radium/low pH also contains elevated sulfate concentrations. pH calculations indicate that sulfate is in the form of sulfuric acid. A model for the origin of elevated Ra-226 levels in deeper SPA wells envisions infiltration of oxygenated SPA groundwater into reduced pyritic CBCU sediments, with consequent oxidative pyrite dissolution, and acidification of groundwater. Then, naturally occurring CBCU radium dissolves, and mixes into the Steed Pond Aquifer.
- Report Numbers
- E 1.99:sgw-2005-00007
sgw-2005-00007 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
12/21/2005.
"sgw-2005-00007"
unknown.
KUBILIUS, WALTER. - Funding Information
- DE-AC09-96SR18500
View MARC record | catkey: 13832239