X-rays at Solid-Liquid Surfaces [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy. Office of Science, 2007.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Additional Creators:
- Argonne National Laboratory, United States. Department of Energy. Office of Science, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- Solid-liquid interfaces play an important role in many areas of current and future technologies, and in our biosphere. They play a key role in the development of nanofluidics and nanotribology, which sensitively depend on our knowledge of the microscopic structures and phenomena at the solid-liquid interface. The detailed understanding of how a fluid meets a wall is also a theoretical challenge. In particular, the phenomena at repulsive walls are of interest, since they affect many different phenomena, such as water-repellent surfaces or the role of the hydrophobic interaction in protein folding. Recent x-ray reflectivity studies of various solid-liquid interfaces have disclosed rather intriguiing phenomena, which will be discussed in this lecture: premelting of ice in contact with silica; liquid Pb in contact with Si; water in contact with hydrophobic surfaces. These experiments, carried out with high-energy x-ray microbeams, reveal detailed insight into the liquid density profile closest to the wall. A detailed insight into atomistic phenomena at solid-liquid interfaces is also a prerequisite in the microscopic control of electrochemical reactions at interfaces. Recent x-ray studies show the enormous future potential of such non-destructive analytical tools for the in situ observation of (electro-)chemical surface reactions. This lecture will review recent x-ray experiments on solid-liquid interfaces.
- Report Numbers:
- E 1.99:1122575
- Subject(s):
- Note:
- Published through SciTech Connect.
05/02/2007.
APS Colloquium Series, Advanced Photon Source (APS) at Argonne National Laboratory, Argonne, Illinois (United States), presented on May 02, 2007.
Dosch, Helmut. - Funding Information:
- ACO2-06CH11357
View MARC record | catkey: 14061313