COMPACTION WAVE PROFILES IN GRANULAR HMX [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2001.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 262 Kilobytes pages : digital, PDF file
- Additional Creators
- Los Alamos National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Meso-scale simulations of a compaction wave in a granular bed of HMX have been performed. The grains are fully resolved in order that the change in porosity across the wave front is determined by the elastic-plastic response of the grains rather than an empirical law for the porosity as a function of pressure. Numerical wave profiles of the pressure and velocity are compared with data from a gas gun experiment. The experiment used an initial porosity of 36%, and the wave had a pressure comparable to the yield strength of the grains. The profiles are measured at the front and back of the granular bed. The transit time for the wave to travel between the gauges together with the Hugoniot jump conditions determines the porosity behind the wave front. In the simulations the porosity is determined by the yield strength and stress concentrations at the contact between grains. The value of the yield strength needed to match the experiment is discussed. Analysis of the impedance match of the wave at the back gauge indicates that the compaction wave triggers a small amount of burn, less than 1% mass fraction, on the micro-second time scale of the experiment.
- Report Numbers
- E 1.99:la-ur-01-3103
la-ur-01-3103 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
06/01/2001.
"la-ur-01-3103"
Conference title not supplied, Conference location not supplied, Conference dates not supplied.
R. MENIKOFF. - Funding Information
- W-7405-ENG-36
View MARC record | catkey: 14061879