Electrokinetic pumps and actuators [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2000.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 30 pages : digital, PDF file
- Additional Creators
- Sandia National Laboratories, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.
- Report Numbers
- E 1.99:sand2000-8218
sand2000-8218 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
03/01/2000.
"sand2000-8218"
Phillip M. Paul. - Type of Report and Period Covered Note
- Topical;
- Funding Information
- AC04-94AL85000
View MARC record | catkey: 14066847