Mechanical properties of granular materials [electronic resource] : A variational approach to grain-scale simulations
- Published:
- Berkeley, Calif. : Lawrence Berkeley National Laboratory, 2009.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Additional Creators:
- Lawrence Berkeley National Laboratory
United States. Department of Energy. Office of Scientific and Technical Information - Access Online:
- www.osti.gov
- Summary:
- The mechanical properties of cohesionless granular materials are evaluated from grain-scale simulations. A three-dimensional pack of spherical grains is loaded by incremental displacements of its boundaries. The deformation is described as a sequence of equilibrium configurations. Each configuration is characterized by a minimum of the total potential energy. This minimum is computed using a modification of the conjugate gradient algorithm. Our simulations capture the nonlinear, path-dependent behavior of granular materials observed in experiments. Micromechanical analysis provides valuable insight into phenomena such as hysteresis, strain hardening and stress-induced anisotropy. Estimates of the effective bulk modulus, obtained with no adjustment of material parameters, are in agreement with published experimental data. The model is applied to evaluate the effects of hydrate dissociation in marine sediments. Weakening of the sediment is quantified as a reduction in the effective elastic moduli.
- Note:
- Published through SciTech Connect.
01/15/2009.
"lbnl-1527e"
International Journal for Numerical and Analytical Methods in Geomechanics ISSN 0363-9061; IJNGDZ FT
Patzek, T.W.; Silin, D.B.; Holtzman, R.
Earth Sciences Division - Funding Information:
- DE-AC02-05CH11231
View MARC record | catkey: 14130460