Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection [electronic resource].
- Published:
- Berkeley, Calif. : Lawrence Berkeley National Laboratory, 2009.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Additional Creators:
- Lawrence Berkeley National Laboratory and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- Injection of carbon dioxide (CO₂) into saline aquifers confined by low-permeability cap rock will result in a layer of CO₂ overlying the brine. Dissolution of CO₂ into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO₂ storage security because it accelerates the transfer of buoyant CO₂ into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualization tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO₂ solute-driven convection (CSC). Upon introduction of CO₂ into the system, a layer of CO₂-laden brine forms at the CO₂-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO₂ uptake of the convection system indicates that the CO₂ dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments is probably initiated by a small temperature gradient induced by the cell illumination.
- Report Numbers:
- E 1.99:lbnl-2731e
lbnl-2731e - Other Subject(s):
- Note:
- Published through SciTech Connect.
09/01/2009.
"lbnl-2731e"
Transport in Porous Media TPMEEI FT
Pruess, K.; Kneafsey, T.
Earth Sciences Division - Funding Information:
- DE-AC02-05CH11231
View MARC record | catkey: 14130884