PARTICLES OF DIFFERENCE [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy. Office of Energy Research, 2000.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 22 pages : digital, PDF file
- Additional Creators
- Brookhaven National Laboratory, United States. Department of Energy. Office of Energy Research, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- It is no longer appropriate, if it ever was, to think of atmospheric aerosols as homogeneous spheres of uniform composition and size. Within the United States, and even more globally, not only the mass loading but also the composition, morphology, and size distribution of atmospheric aerosols are highly variable, as a function of location, and at a given location as a function of time. Particles of a given aerodynamic size may differ from one another, and even within individual particles material may be inhomogeneously distributed, as for example, carbon spherules imbedded in much larger sulfate particles. Some of the particulate matter is primary, that is, introduced into the atmosphere directly as particles, such as carbon particles in diesel exhaust. Some is secondary, that is, formed in the atmosphere by gas-to-particle conversion. Much of the material is inorganic, mainly sulfates and nitrates resulting mainly from energy-related emissions. Some of the material is carbonaceous, in part primary, in part secondary, and of this material some is anthropogenic and some biogenic. While the heterogeneity of atmospheric aerosols complicates the problem of understanding their loading and distribution, it may well be the key to its solution. By detailed examination of the materials comprising aerosols it is possible to infer the sources of these materials. It may be possible as well to identify specific health impairing agents. The heterogeneity of aerosol particles is thus the key to identifying their sources, to understanding the processes that govern their loading and properties, and to devising control strategies that are both effective and efficient. Future research must therefore take cognizance of differences among aerosol particles and use these differences to advantage.
- Report Numbers
- E 1.99:bnl--67468
E 1.99: kp1201030
kp1201030
bnl--67468 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
09/21/2000.
"bnl--67468"
" kp1201030"
"KP1201030"
CONFERENCE ON AIR QUALITY II, MCLEAN, VA (US), 09/19/2000--09/21/2000.
SCHWARTZ,S.E. - Funding Information
- AC02-98CH10886
AS248ECD
View MARC record | catkey: 14134522