Actions for Nonlocal transport of chemically reactive, degradable species in heterogeneous porous media. Final report [electronic resource].
Nonlocal transport of chemically reactive, degradable species in heterogeneous porous media. Final report [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy. Office of Energy Research, 1998.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 19 pages : digital, PDF file
- Additional Creators
- United States. Department of Energy. Office of Energy Research and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- One of the most significant challenges facing environmental engineers and scientists is predicting the movement and degradation of chemicals in hierarchical porous media. The distribution of subsurface properties is poorly known because of the inaccessibility of the subsurface environment and the random nature of the geologic deposition process. In addition, the subsurface often possesses distinct physical, chemical and biological hierarchies, which complicates the ability to successfully characterize and thus predict property distributions and processes with information from a limited number of sample locations over a limited number of scales. Knowledge of the spatial structure of microbial populations and activities and the dynamic environmental factors that control this spatial structure are important in characterizing sites for remediation and disposal, and for the ability to effectively deliver nutrients to promote degradation and stabilization. To do so effectively requires a correct theoretical formulation of the problem, implementation of this formulation for predictive purposes, and even more importantly knowledge of what should be measured and how and when to measure it. The contents of this report is as follows: (Section 2) statement of goals, (Section 3) development of nonlocal models for chemical transport with uncertainty in biological, physical and chemical data, (Section 4) a discussion of molecular-scale phenomena of relevance to adsorption and flow in nanoporous materials such as clays, (Section 5) meso and macroscale models of flow in, and deformation of, clays, (Section 6) collaborative efforts with DOE labs, (Section 7) P.I. awards, (Section 8) publications resulting from the research efforts supported through this grant, and finally students supported under this grant.
- Report Numbers
- E 1.99:doe/er/60310--1(7/98)
doe/er/60310--1(7/98) - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
07/30/1998.
"doe/er/60310--1(7/98)"
"DE99001431"
Cushman, J.H.
Purdue Univ., Center for Applied Mathematics, West Lafayette, IN (United States) - Funding Information
- FG02-85ER60310
View MARC record | catkey: 14137500