TEMPORARILY ALLOYING TITANIUM TO FACILITATE FRICTION STIR WELDING [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy, 2009.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description:
- PDFN
- Additional Creators:
- Pacific Northwest National Laboratory (U.S.), United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.
- Report Numbers:
- E 1.99:pnnl-18411
pnnl-18411 - Subject(s):
- Other Subject(s):
- Note:
- Published through SciTech Connect.
05/06/2009.
"pnnl-18411"
"VT0505000"
Hovanski, Yuri. - Funding Information:
- AC05-76RL01830
View MARC record | catkey: 14390077