Production and storage of ultra cold neutrons in superfluid helium [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 1998.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 4 pages : digital, PDF file
- Additional Creators
- Los Alamos National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) concerning the investigation of a new method for the experimental exploitation of ultra-cold neutrons. The production and storage of ultra cold neutrons in superfluid helium has been suggested as a tool for the production of high densities of ultra cold neutrons for fundamental nuclear physics as well as for sensitive measurements for condensed matter. A particular application of this technique has been suggested by Doyle and Lamoreaux that involves the trapping of neutrons in a magnetic field within the superfluid helium volume. Neutron decays within the trap volume are detected by the scintillation light produced in the liquid helium. A cryostat and magnetic trap have been constructed as well as a prototype light detection system. This system was installed on a cold neutron beam line at the NIST Cold Neutron Research Facility in the summer of 1997. Preliminary results indicate the detection of helium scintillation light from the detection vessel.
- Report Numbers
- E 1.99:la-ur--98-3577
la-ur--98-3577 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
12/31/1998.
"la-ur--98-3577"
"DE99002260"
Greene, G.L.; Lamoreaux, S. - Funding Information
- W-7405-ENG-36
View MARC record | catkey: 14403515