Actions for Solid state electronic devices
Solid state electronic devices / D.K. Bhattacharya, Scientist, Solid State Physics Laboratory, New Delhi, Rajnish Sharma, Dean (Academics), School of Engineering and Technology, Chitkara University, Himachal Pradesh
- Author
- Bhattacharya, D. K.
- Published
- New Delhi : Oxford University Press, 2013.
- Edition
- Second edition.
- Physical Description
- xxv, 540 pages : illustrations ; 25 cm.
- Additional Creators
- Sharma, Rajnish (Semiconductor scientist)
- Series
- Contents
- Machine generated contents note: 1.1.Conduction of electricity through gases -- 1.1.1.Glow discharge -- 1.2.Motion of a charged particle in electric field -- 1.2.1.Energy acquired by an electron -- 1.2.2.Electron transit time -- 1.3.Motion of a charged particle in magnetic field -- 1.4.Motion of a charged particle in Combined electric and magnetic field -- 1.5.Cathode ray tube -- 1.5.1.Focussing with electric fields -- 1.5.2.Focussing with magnetic field -- 1.5.3.Deflection systems -- 2.1.Semiconductor materials -- 2.2.Types of solids -- 2.3.Crystal lattices -- 2.3.1.Unit cell -- 2.3.2.Cubic lattices -- 2.3.3.Crystal planes and directions -- 2.3.4.Diamond lattice -- 2.4.Atomic bonding -- 2.4.1.Van der Waals bond -- 2.4.2.Ionic bond -- 2.4.3.Covalent bond -- 2.4.4.Metallic bond -- 2.5.Imperfections and impurities in solids -- 2.5.1.Imperfections -- 2.5.2.Impurities -- 2.6.Bulk crystal growth -- 2.6.1.Starting material -- 2.6.2.Single-crystal ingots -- 2.7.Epitaxial growth -- 2.7.1.Vapour-phase epitaxy -- 2.7.2.Liquid-phase epitaxy -- 2.7.3.Molecular beam epitaxy -- 3.1.Bonding force and formation of energy bands -- 3.2.E-k diagrams -- 3.2.1.Band structure modification in semiconductors -- 3.3.Charge carriers in semiconductors -- 3.3.1.Electrons and holes -- 3.3.2.Intrinsic semiconductor -- 3.3.3.Extrinsic semiconductor -- 3.4.Carrier concentrations in semiconductors -- 3.4.1.Fermi level -- 3.4.2.Equilibrium electron and hole concentrations -- 3.4.3.Temperature dependence of carrier concentrations -- 3.4.4.Compensation -- 3.5.Carrier drift -- 3.5.1.Mobility and conductivity -- 3.5.2.High-field effect -- 3.5.3.Hall effect -- 3.6.Carrier diffusion -- 3.6.1.Diffusion current density -- 3.6.2.Total current density -- 3.7.Graded impurity distribution -- 3.7.1.Induced field -- 3.7.2.Einstein relation -- 4.1.Semiconductor in equilibrium -- 4.2.Excess carrier generation and recombination -- 4.2.1.Optical absorption -- 4.2.2.Excess minority carrier lifetime -- 4.3.Carrier lifetime (General case) -- 4.3.1.Shockley-Read-Hall theory -- 4.3.2.Low injection -- 4.4.Diffusion and recombination -- 4.4.1.Continuity equation -- 4.4.2.Haynes-Shockley experiment -- 4.5.Quasi-Fermi energy levels -- 4.6.Surface effects -- 4.6.1.Surface states -- 4.6.2.Surface recombination velocity -- 5.1.Fabrication of p-n Junctions -- 5.1.1.P-n junction formation -- 5.1.2.Thermal oxidation -- 5.1.3.Diffusion -- 5.2.Basic p-n junction -- 5.2.1.Basic structure -- 5.2.2.No applied bias -- 5.2.3.Built-in electric field -- 5.2.4.Space charge region width -- 5.3.Reverse-biased p-n junction -- 5.3.1.Energy band diagram -- 5.3.2.Space charge width and electric field -- 5.3.3.Depletion capacitance -- 5.3.4.One-sided abrupt junction -- 5.4.Junctions with nonuniform doping -- 5.4.1.Linearly graded junctions -- 5.4.2.Hyper-abrupt junctions -- 5.5.Varactor diode -- 5.6.Junction breakdown -- 5.6.1.Zener breakdown -- 5.6.2.Avalanche breakdown -- 5.7.Tunnel diode -- 6.1.P-n junction current flow -- 6.1.1.Charge flow in a p-n junction -- 6.1.2.Ideal current-voltage characteristics -- 6.1.3.Boundary conditions -- 6.1.4.Minority carrier distribution -- 6.1.5.Junction current in ideal p-n junction -- 6.1.6.Short diode -- 6.2.Small-signal model of p-n junction -- 6.2.1.Diffusion resistance -- 6.2.2.Diffusion capacitance -- 6.2.3.Equivalent circuit -- 6.3.Generation-recombination currents -- 6.3.1.Reverse-bias generation current -- 6.3.2.Forward-bias recombination current -- 6.3.3.Net forward-bias current -- 6.4.Junction diode switching times -- 7.1.Metal-Semiconductor contacts -- 7.1.1.Schottky model -- 7.1.2.Space charge width and junction capacitance -- 7.1.3.Characteristics based on emission model -- 7.1.4.Schottky effect -- 7.1.5.Tunnelling current -- 7.2.Effect of surface states and interface -- 7.3.Metal-Semiconductor ohmic contacts -- 7.3.1.Specific contact resistance -- 7.4.Heterojunctions -- 7.4.1.Energy band diagram -- 7.4.2.Two-dimensional electron gas -- 7.4.3.Quantum confinement of carriers -- 8.1.Fundamentals of bipolar junction transistors -- 8.2.Current components and relations -- 8.3.Important notations and configurations -- 8.4.BJT characteristics -- 8.5.Current gains for transistor -- 8.6.Minority carrier distribution -- 8.6.1.Base region -- 8.6.2.Emitter region -- 8.6.3.Collector region -- 8.7.Models for bipolar junction transistors -- 8.7.1.Ebers-Moll model -- 8.7.2.Gummel-Poon model -- 8.7.3.Hybrid-pi model -- 8.7.4.H-parameter equivalent circuit model -- 8.8.Important BJT configurations -- 8.8.1.Common-emitter amplifier -- 8.8.2.Common-base amplifier -- 8.8.3.Common-collector amplifier -- 8.9.Thermal runaway -- 8.10.Kirk effect -- 8.11.Frequency limitation for transistor -- 8.12.Webster effect -- 8.13.High-frequency transistors -- 8.14.Switching characteristics of BJT -- 8.14.1.Schottky transistor -- 9.1.Junction-field-effect transistor -- 9.1.1.Operating principle -- 9.1.2.Current-voltage characteristics -- 9.2.Metal-Semiconductor field-effect transistor -- 9.2.1.Normally-off and normally-on MESFETs -- 9.2.2.High-electron-mobility transistor -- 9.3.Basic MOS structure -- 9.3.1.Depletion layer thickness -- 9.3.2.Work-function difference -- 9.4.Capacitance-voltage characteristics of MOS capacitor -- 9.4.1.Interface traps and oxide charge -- 9.4.2.Effect of oxide charge on c-v characteristics -- 9.5.MOS Field-effect Transistor -- 9.5.1.MOSFET characteristics -- 9.5.2.Short channel effect -- 9.5.3.Control of threshold voltage -- 9.5.4.Substrate bias effect -- 9.5.5.Subthreshold characteristics -- 9.5.6.Equivalent circuits for MOSFET -- 9.5.7.MOSFET scaling and hot electron effects -- 9.5.8.Drain-induced barrier lowering -- 9.5.9.Short channel and narrow width effect -- 9.5.10.Gate-induced drain leakage -- 9.5.11.Comparison of BJT with MOSFET -- 9.5.12.Types of MOSFET -- 10.1.Optical absorption -- 10.1.1.Absorption coefficient -- 10.1.2.Excess carrier generation rate -- 10.2.Photovoltaic cells -- 10.2.1.P-n junction solar cells -- 10.2.2.Conversion efficiency -- 10.2.3.Effect of series resistance -- 10.2.4.Heterojunction solar cells -- 10.2.5.Amorphous silicon solar cells -- 10.3.Photodetectors -- 10.3.1.Photoconductors -- 10.3.2.Photodiodes -- 10.3.3.Phototransistors -- 10.4.Light-emitting diodes -- 10.4.1.LED materials and devices -- 10.4.2.Loss mechanisms and structure -- 10.5.Laser diodes -- 10.5.1.Materials and structures -- 10.5.2.Population inversion -- 11.1.Bipolar power transistors -- 11.1.1.Current crowding -- 11.1.2.Vertical transistor structure -- 11.1.3.Transistor characteristics -- 11.1.4.Darlington pair configuration -- 11.2.Power MOSFETs -- 11.2.1.Structures -- 11.2.2.Power MOSFET characteristics -- 11.3.Heat sink -- 11.4.Semiconductor controlled rectifier -- 11.4.1.Fundamental characteristics -- 11.4.2.Two-transistor model -- 11.4.3.Depletion layer width and effect of gate current -- 11.4.4.Bidirectional thyristors -- 11.5.Gate turn-off thyristor (GTO) -- 11.6.Insulated-gate bipolar transistor (IGBT) -- 11.7.Unijunction transistor -- 12.1.Photolithography -- 12.2.Etching techniques -- 12.2.1.Wet etching -- 12.2.2.Dry etching -- 12.3.Passive components -- 12.3.1.Resistors -- 12.3.2.Capacitors -- 12.3.3.Inductors -- 12.4.Bipolar technology -- 12.4.1.Basic process -- 12.4.2.Dielectric isolation -- 12.5.MOSFET technology -- 12.5.1.NMOS process -- 12.5.2.NMOS memory devices -- 12.5.3.Charge-coupled devices -- 12.5.4.CMOS technology -- 12.6.MESFET technology -- 12.7.Micro-electromechanical systems -- 12.7.1.Basic processes -- 13.1.Types of microwave devices -- 13.2.Working principle of gunn and IMPATT diodes -- 13.2.1.Gunn diode -- 13.2.2.IMPATT diode -- 13.3.Operation of TRAPATT and BARITT diodes -- 13.3.1.TRAPATT diode -- 13.3.2.BARITT diode -- 14.1.Single-phase rectifiers -- 14.1.1.Half-wave rectifier -- 14.1.2.Full-wave rectifier -- 14.1.3.Bridge rectifier -- 14.1.4.Ripple factor -- 14.2.Filter circuits -- 14.2.1.Shunt-capacitor filter -- 14.2.2.π filter -- 14.2.3.RC filter -- 14.3.Voltage regulators -- 14.3.1.Zener diode regulator -- 14.3.2.Series voltage regulator -- 14.4.Switched-mode power supply.
- Subject(s)
- Genre(s)
- ISBN
- 9780198084570 (pbk.)
0198084579 (pbk.) - Audience Notes
- Undergraduate students of engineering.
- Bibliography Note
- Includes bibliographical references (pages 532-533) and index.
View MARC record | catkey: 14423832