Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy. Office of Science, 2011.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 4.09 MB : digital, PDF file
- Additional Creators
- Ames Laboratory, United States. Department of Energy. Office of Science, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.
- Report Numbers
- E 1.99:is-t 3040
is-t 3040 - Subject(s)
- Note
- Published through SciTech Connect.
12/01/2011.
"is-t 3040"
Kim, Hyong June. - Funding Information
- DE-AC02-07CH11358
View MARC record | catkey: 14443534