Particle Velocity and Deposition Efficiency in the Cold Spray Process [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 1998.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Additional Creators
- Sandia National Laboratories, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Copper powder was sprayed by the cold-gas dynamic method. In-flight particle velocities were measured with a laser-two-focus system as a function of process parameters such as gas temperature, gas pressure, and powder feed rate. Particle velocities were uniform in a relatively large volume within the plume and agreed with theoretical predictions. The presence of the substrate was found to have no significant effect on particle velocities. Cold-spray deposition efficiencies were measured on aluminum substrates as a function of particle velocity and incident angle of the plume. Deposition efficiencies of up to 95% were achieved. The critical velocity for deposition was determined to be about 640 meters per second. This work investigates both the in-flight characteristics of copper particles in a supersonic cold-spray plume and the build-up of the subsequent coating on aluminum substrates. Velocities were found to be relatively constant within a large volume of the plume. Particle counts dropped off sharply away from the central axis. The presence of a substrate was found to have no effect on the velocity of the particles. A substantial mass-loading effect on the particle velocity was observed; particle velocities begin to drop as the mass ratio of powder to gas flow rates exceeds 3%. The measured variation of velocity with gas pressure and pre-heat temperature was in fairly good agreement with theoretical predictions. Helium may be used as the driving gas instead of air in order to achieve higher particle velocities for a given temperature and pressure. Coating deposition efficiencies were found to increase with particle velocity and decrease with gun- substrate angle. There did not appear to be any dependence of the deposition efficiency on coating thickness. A critical velocity for deposition of about 640 mk appears to fit the data well. The cold-spray technique shows promise as a method for the deposition of materials which are thermally sensitive or may experience rapid oxidation under typical thermal spray conditions. High deposition efficiencies are achievable for certain coating-substrate conditions. Work remains to determine the material and microstructural properties which govern the coating process.
- Report Numbers
- E 1.99:sand98-2554j
sand98-2554j - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
11/12/1998.
"sand98-2554j"
"DE00001951"
Journal of Thermal Spray Technology FT
Smith, M.F.; Gilmore, D.L.; Neiser, R.A.; Dykhuizen, R.C.; Roemer, T.J. - Funding Information
- AC04-94AL85000
View MARC record | catkey: 14449921