High-temperature morphological evolution of lithographically introduced cavities in silicon carbide [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2000.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- vp : digital, PDF file
- Additional Creators
- Lawrence Berkeley National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Internal cavities of controlled geometry and crystallography were introduced in 6H silicon carbide single crystals by combining lithographic methods, ion beam etching, and solid-state diffusion bonding. The morphological evolution of these internal cavities (negative crystals) in response to anneals of up to 128 h duration at 1900 degrees C was examined using optical microscopy. Surface energy anisotropy and faceting have a strong influence on both the geometric and kinetic characteristics of evolution. Decomposition of 12{bar 1}0 cavity edges into 101{bar 0} facets was observed after 16 h anneals, indicating that 12{bar 1}0 faces are not components of the Wulff shape. The shape evolution kinetics of penny-shaped cavities were also investigated. Experimentally observed evolution rates decreased much more rapidly with those predicted by a model in which surface diffusion is assumed to be rate-limiting. This suggests that the development of facets, and the associated loss of ledges and terraces during the initial stages of evolution results in an evolution process limited by the nucleation rate of attachment/detachment sites (ledges) on the facets.
- Report Numbers
- E 1.99:lbnl--46789
lbnl--46789 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
12/01/2000.
"lbnl--46789"
Journal of the American Ceramic Society 84 5 ISSN 0002-7820; JACTAW FT
Glaeser, Andreas M.; Narushima, Takayuki. - Funding Information
- AC03-76SF00098
512701
View MARC record | catkey: 14451870