Actions for Effects of processing conditions and ambient environment on the microstructure and fracture strength of copper
Effects of processing conditions and ambient environment on the microstructure and fracture strength of copper/niobium/copper interlayer joints for alumina [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy. Office of Basic Energy Sciences, 1999.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Additional Creators
- Lawrence Berkeley National Laboratory, United States. Department of Energy. Office of Basic Energy Sciences, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Partial transient liquid phase (PTLP) bonding is a technique which can be used to join ceramics with metals and is used to form niobium-based joints for alumina. The principal advantage to PTLP bonding is that it enables refractory joints to be fabricated at temperatures below those typically required by solid state diffusion bonding. A thorough review of the important parameters (chemical compatibility, thermal expansion match, sufficient wettability of the liquid phase on the solid phases) in choosing a joining material for ceramics by the PTLP method is provided. As in conventional PTLP joining, the current study uses thin (=3 (mu)m) copper layers sandwiched between the alumina (bulk) and niobium (127 (mu)m). However, unlike the case of copper/nickel/copper obium is limited. Consequently, the copper is not entirely dissolved in the process, resulting in a two phase (copper-rich and niobium-rich phases) microstructure. Different processing conditions (temperature and applied load) result in different morphologies of the copper-rich and niobium-rich phases at the interface. These different microstructures exhibit distinct strength characteristics. Extended annealing of as-processed joints can influence the strengths differently depending on the ambient partial oxygen pressure at the annealing temperature. The focus of this work is to correlate processing conditions, microstructure, and resulting joint strength. Under optimum processing conditions (1400 degrees C, 2.2 MPa), joints with strengths in excess of 200 MPa at 1200 degrees C are fabricated.
- Report Numbers
- E 1.99:lbnl--47199
lbnl--47199 - Subject(s)
- Other Subject(s)
- Dissertation Note
- master's thesis, M.S., University of California at Berkeley, Berkeley, California
- Note
- Published through SciTech Connect.
12/15/1999.
"lbnl--47199"
Marks, Robert Alan. - Funding Information
- AC03-76SF00098
512703
View MARC record | catkey: 14454762