Z-contrast imaging and grain boundaries in semiconductors [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 1996.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 3 pages : digital, PDF file
- Additional Creators
- Oak Ridge National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Interest in grain boundaries in semiconductors is linked to the application of polycrystalline semiconductors as photovoltaic and interconnect materials. In real devices such as solar cells and MOS structures as well as future devices such as flat-panel displays, the intergranular regions of the polycrystalline solid have a significant effect on the flow of electronic current. These grain boundary barriers exist because the chemical potential of the boundary atoms are shifted from the bulk value by the change in local symmetry. The chemical potential is also changed by impurities, other structural defects, and other phases in the boundary. The lack of knowledge on the atomic structure of grain boundaries is, at present, the greatest barrier to advancements in the understanding of the electrical properties of these defects. The advances of the last few years have provided the tools with which to probe these interfaces at the true atomic scale. One such tool is the high-resolution scanning transmission electron microscope installed at Oak Ridge National Laboratory (VG Microscopes HB603) that can form a 1.27 Å electron probe. Images are formed by scanning the probe across a thin sample and using an annular detector to collect electrons scattered to high angles. Because the annular detector collects electrons scattered over a wide range of angles, phase correlation and dynamical diffraction effects are averaged by this annular integration. Thus, an image with incoherent characteristics is produced and retained to relatively large specimen thickness. The key advantage of incoherent imaging is that when the microscope is focused to produce maximum image contrast, the bright image features directly correspond to the positions of the atomic columns.
- Report Numbers
- E 1.99:conf-960860--3
conf-960860--3 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
03/01/1996.
"conf-960860--3"
"DE96009759"
54. annual meeting of the Microscopy Society of America (MSA): microscopy and microanalysis, Minneapolis, MN (United States), 11-15 Aug 1996.
Chisholm, M.F.; Pennycook, S.J. - Funding Information
- AC05-96OR22464
View MARC record | catkey: 14455020