Combined space and time convergence analysis of a compressible flow algorithm [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy, 2002.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description:
- 8 pages : digital, PDF file
- Additional Creators:
- Los Alamos National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- In this study, we quantify both the spatial and temporal convergence behavior simultaneously for various algorithms for the two-dimensional Euler equations of gasdynamics. Such an analysis falls under the rubric of verification, which is the process of determining whether a simulation code accurately represents the code developers description of the model (e.g., equations, boundary conditions, etc.). The recognition that verification analysis is a necessary and valuable activity continues to increase among computational fluid dynamics practicioners. Using computed results and a known solution, one can estimate the effective convergence rates of a specific software implementation of a given algorithm and gauge those results relative to the design properties of the algorithm. In the aerodynamics community, such analyses are typically performed to evaluate the performance of spatial integrators; analogous convergence analysis for temporal integrators can also be performed. Our approach combines these two usually separate activities into the same analysis framework. To accomplish this task, we outline a procedure in which a known solution together with a set of computed results, obtained for a number of different spatial and temporal discretizations, are employed to determine the complete convergence properties of the combined spatio-temporal algorithm. Such an approach is of particular interest for Lax-Wendroff-type integration schemes, where the specific impact of either the spatial or temporal integrators alone cannot be easily deconvolved from computed results. Unlike the more common spatial convergence analysis, the combined spatial and temporal analysis leads to a set of nonlinear equations that must be solved numerically. The unknowns in this set of equations are various parameters, including the asymptotic convergence rates, that quantify the basic performance of the software implementation of the algorithm.
- Report Numbers:
- E 1.99:la-ur-02-6463
la-ur-02-6463 - Subject(s):
- Other Subject(s):
- Note:
- Published through SciTech Connect.
01/01/2002.
"la-ur-02-6463"
Submitted to 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, June 23-26, 2003.
Rider, William; Kamm, J. R.; Brock, J. S.
View MARC record | catkey: 14654661