Rapid Ultrasensitive Chemical-Fingerprint Detection of Chemical and Biochemical Warfare Agents [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy, 2002.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description:
- 39 pages : digital, PDF file
- Additional Creators:
- Sandia National Laboratories
United States. Department of Energy
United States. Department of Energy. Office of Scientific and Technical Information - Access Online:
- www.osti.gov
- Summary:
- Vibrational spectra can serve as chemical fingerprints for positive identification of chemical and biological warfare molecules. The required speed and sensitivity might be achieved with surface-enhanced Raman spectroscopy (SERS) using nanotextured metal surfaces. Systematic and reproducible methods for preparing metallic surfaces that maximize sensitivity have not been previously developed. This work sought to develop methods for forming high-efficiency metallic nanostructures that can be integrated with either gas or liquid-phase chem-lab-on-a-chip separation columns to provide a highly sensitive, highly selective microanalytical system for detecting current and future chem/bio agents. In addition, improved protein microchromatographic systems have been made by the creation of acrylate-based porous polymer monoliths that can serve as protein preconcentrators to reduce the optical system sensitivity required to detect and identify a particular protein, such as a bacterial toxin.
- Subject(s):
- Note:
- Published through SciTech Connect.
12/01/2002.
"sand2002-4055"
ASHBY, CAROL I.; SHEPODD, TIMOTHY J.; YELTON, WILLIAM G.; MURON, DAVID J. - Type of Report and Period Covered Note:
- Topical;
- Funding Information:
- AC04-94AL85000
View MARC record | catkey: 14655294