Study of Increased Radiation When an X-ray Tube is Placed in a Strong Magnetic Field [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2007.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description
- 11 pages : digital, PDF file
- Additional Creators
- Stanford Linear Accelerator Center, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- When a fixed anode x-ray tube is placed in a magnetic field (B) that is parallel to the anode-cathode axis, the x-ray exposure increases with increasing B. It was hypothesized that the increase was caused by backscattered electrons which were constrained by B and reaccelerated by the electric field onto the x-ray tube target. We performed computer simulations and physical experiments to study the behavior of the backscattered electrons in a magnetic field, and their effects on the radiation output, x-ray spectrum, and off-focal radiation. A Monte Carlo program (EGS4) was used to generate the combined energy and angular distribution of the backscattered electrons. The electron trajectories were traced and their landing locations back on the anode were calculated. Radiation emission from each point was modeled with published data (IPEM Report 78), and thus the exposure rate and x-ray spectrum with the contribution of backscattered electrons could be predicted. The point spread function for a pencil beam of electrons was generated and then convolved with the density map of primary electrons incident on the anode as simulated with a finite element program (Opera-3d, Vector Fields, UK). The total spatial distribution of x-ray emission could then be calculated. Simulations showed that for an x-ray tube working at 65 kV, about 54% of the electrons incident on the target were backscattered. In a magnetic field of 0.5 T, although the exposure would be increased by 33%, only a small fraction of the backscattered electrons landed within the focal spot area. The x-ray spectrum was slightly shifted to lower energies and the half value layer (HVL) was reduced by about 6%. Measurements of the exposure rate, half value layer and focal spot distribution were acquired as functions of B. Good agreement was observed between experimental data and simulation results. The wide spatial distribution of secondary x-ray emission can degrade the MTF of the x-ray system at low spatial frequencies for B ≤ 0.5 T.
- Report Numbers
- E 1.99:slac-pub-12296
slac-pub-12296 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
01/12/2007.
"slac-pub-12296"
Med.Phys.34:408-418,2007 34 ISSN 0094-2405; MPHYA6 FT
Nelson, W.R.; Fahrig, R.; Pelc, N.J.; Wen, Z.F. - Funding Information
- AC02-76SF00515
View MARC record | catkey: 14669058