Actions for Understanding diseases at a molecular level [electronic resource].
Understanding diseases at a molecular level [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2008.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Additional Creators
- Los Alamos National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- A group of scientists at Los Alamos National Laboratory in 2008 successfully pioneered a microscope able to track protein-sized, hard to see particles in three dimensions. The 3D Tracking Microscope, designed and developed by James H. Werner, Guillaume A. Lessard, Nathan Wells and Peter M. Goodwin of LANL's Center for Integrated Nanotechnologies, won a 2008 R&D 100 award. The team's invention is a unique confocal 3D tracking microscope capable of following the motion of nanometer-sized objects, such as individual molecules, quantum dots, organic fluorophores and single green fluorescent proteins as they zoom through three-dimensional space at rates faster than many intracellular transport processes. The 3D tracking microscope can follow the transport of nanometer-sized particles at micrometer per second rates. This enables researchers to follow individual protein, ribonucleic acid (RNA), or deoxyribonucleic acid (DNA) motion throughout the full three-dimensional volume of a cell to discover the path a particular biomolecule takes, the method it employs to get there and the specific proteins it may be interacting with along the way. In addition to applications in molecular spectroscopy and materials research, the 3D tracking microscope is a powerful tool primarily in the fields of cellular biology and biomedical research, Werner said. 'The 3D tracking microscope will advance our understanding of the molecular basis and kinetics of many diseases, such as cancer, diabetes, or muscular dystrophy,' he said. 'We anticipate the microscope will become a valuable weapon in the arsenal of biomedical researchers who are fighting to find cures for cancer, heart disease and other protein or DNA-based diseases.'
- Report Numbers
- E 1.99:la-ur-08-07209
E 1.99: la-ur-08-7209
la-ur-08-7209
la-ur-08-07209 - Other Subject(s)
- Note
- Published through SciTech Connect.
01/01/2008.
"la-ur-08-07209"
" la-ur-08-7209"
Innovation:america's journal of technology commercialization FT
Rosev, Tatjana K. - Funding Information
- AC52-06NA25396
View MARC record | catkey: 14674079