Reducing ion beam noise of vacuum arc ion sources [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy, 2001.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description:
- 10 pages : digital, PDF file
- Additional Creators:
- Lawrence Berkeley National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- Vacuum arc ion sources are known for delivering high currents of metal ion beams. By Langmuir probe and Faraday cup measurements it is shown that fluctuations of the ion beam current are due to the fluctuations of plasma density which in turn are due to the explosive nature of plasma production at cathode spots. Humphries and co-workers and later Oks and co-workers have shown that beam fluctuations can be reduced by inserting biased meshes in the plasma. Here, the idea of ion extraction at kV-level with post-acceleration is investigated. The high voltage allows us to use coarse, ridged meshes or grids. The combination of an extractor operating in the overdense plasma regime with post-acceleration lead to very reproducible, practically ''noiseless'' ion beams however at the expense of low ion current density. The noise reduction is due to ion optics effects. Although the current setup is not suitable for a heavy ion fusion injector due to the low beam current and the risk of extractor voltage breakdown, further development of the concept may lead to reproducible beam pulses of sufficiently high current and brightness.
- Report Numbers:
- E 1.99:lbnl--47844
lbnl--47844 - Subject(s):
- Other Subject(s):
- Note:
- Published through SciTech Connect.
08/29/2001.
"lbnl--47844"
9th International Conference on Ion Sources (ICIS'01), Oakland, CA (US), 09/03/2001--09/07/2001.
Anders, Andre; Hollinger, Ralph. - Funding Information:
- AC03-76SF00098
Z2C084
View MARC record | catkey: 14689897