Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab [electronic resource].
- Published:
- Washington, D.C : United States. Dept. of Energy. Office of Energy Research, 1990.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. - Physical Description:
- Pages: (24 pages) : digital, PDF file
- Additional Creators:
- Fermi National Accelerator Laboratory, United States. Department of Energy. Office of Energy Research, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs.
- Report Numbers:
- E 1.99:fnal-tm-1698
fnal-tm-1698 - Subject(s):
- Other Subject(s):
- Note:
- Published through SciTech Connect.
10/25/1990.
"fnal-tm-1698"
"DE91004665"
Crisp, J. - Funding Information:
- AC02-76CH03000
View MARC record | catkey: 14696162