Actions for Superconducting State : Mechanisms and Properties
Superconducting State : Mechanisms and Properties / Vladimir Z. Kresin, Hans Morawitz, Stuart A. Wolf
- Author
- Kresin, Vladimir Z.
- Published
- Oxford, UK ; New York, NY : Oxford University Press, 2014.
- Edition
- First edition.
- Physical Description
- xiii, 261 pages : illustrations ; 26 cm.
- Additional Creators
- Morawitz, H. and Wolf, Stuart A.
- Series
- Language Note
- Text in English.
- Contents
- Machine generated contents note: 2.1.Adiabatic approximation: Hamiltonian -- 2.2.Adiabatic approximation and non-adiabaticity: Born-Oppenheimer and "crude" approaches -- 2.3.Electron-phonon coupling -- 2.4.Electron-phonon interaction and renormalization of normal parameters -- 2.5.The "Migdal" theorem -- 2.6.Polaronic states -- 2.6.1.Concept -- 2.6.2.Dynamic polaron -- 3.1.Superconductivity as a "giant" non-adiabatic phenomenon -- 3.2.The BCS model -- 3.3.Phonon mechanism: main equations -- 3.4.Critical temperature -- 3.4.1.Weak coupling -- 3.4.2.Intermediate coupling (λ < or almost = to 1.5) -- 3.4.3.Coulomb interaction -- 3.4.4.Very strong coupling -- 3.4.5.The general case -- 3.4.6.About an upper limit of Tc -- 3.5.Properties of superconductors with strong coupling -- 3.6.The Van Hove scenario -- 3.7.Bipolarons: BEC versus BCS -- 3.8.Superconducting semiconductors -- 3.9.Polaronic effect and its impact on Tc -- 3.9.1.Double-well structure -- 3.9.2.Superconducting state -- 4.1.The Little model -- 4.2."Sandwich" excitonic mechanism -- 4.3.Three-dimensional systems: electronic mechanism -- 4.4.Plasmons -- 4.4.1.Plasmons in layered systems: dispersion law and "electronic sound" -- 4.4.2.Plasmons in layered conductors: pairing -- 4.4.3.The 3D case: "demons" -- 5.1.Introduction -- 5.1.1.Localized versus itinerant aspects of the cuprates -- 5.2.Fermi liquid-based theories -- 5.2.1.The spin-bag model of Schrieffer, Wen, and Zhang (1989) -- 5.2.2.The t-J model (Emery, 1987; Zhang and Rice, 1988) -- 5.2.3.Two-dimensional Hubbard model studies by Monte Carlo techniques -- 5.2.4.Spiral phase of a doped quantum antiferromagnet (Shraiman and Siggia, 1988-89) -- 5.2.5.Slave bosons -- 5.3.Non-Fermi-liquid models -- 5.3.1.The resonant valence bond (RVB) model and its evolution -- 5.3.2.Anyon models and fractional statistics -- 5.4.Conclusions -- 6.1.Tunneling spectroscopy -- 6.1.1.Experimental method -- 6.1.2.Energy gap and transition temperature -- 6.1.3.Inversion of the gap equation and α2F(Ω) -- 6.1.4.Electron-phonon coupling parameter λ -- 6.2.Scanning tunneling microscopy and spectroscopy -- 6.3.Infrared spectroscopy -- 6.4.Ultrasonic attenuation -- 6.5.Angle-resolved photoemission -- 6.6.Muon spin resonance ([µ]SR) -- 6.6.1.[µ]SR studies of superconductivity -- 7.1.Multigap superconductivity: general picture -- 7.2.Critical temperature -- 7.3.Energy spectrum -- 7.4.Properties of two-gap superconductors -- 7.4.1.Penetration depth; surface resistance -- 7.4.2.Strong magnetic field: Ginzburg-Landau equations for a multigap superconductor -- 7.4.3.Heat capacity -- 7.4.4.Experimental data -- 7.5.Induced two-band superconductivity -- 7.6.Symmetry of the order parameter and multiband superconductor -- 8.1.Proximity "sandwich" -- 8.2.Critical temperature -- 8.3.Proximity effect versus the two-gap model -- 8.4.Pair-breaking: gapless superconductivity -- 9.1.General remarks -- 9.2.Coulomb pseudopotential -- 9.3.Multi-component lattice -- 9.4.Anharmonicity -- 9.5.Isotope effect in proximity systems -- 9.6.Magnetic impurities and isotope effect -- 9.7.Polaronic effect and isotope substitution -- 9.8.Penetration depth: isotopic dependence -- 10.1.History -- 10.2.Structure of the cuprates -- 10.3.Preparation of bulk and film cuprates -- 10.4.Properties of the cuprates -- 10.4.1.Phase diagram -- 10.4.2.Critical field Hc2 -- 10.4.3.Two-gap spectrum -- 10.4.4.Symmetry of the order parameter -- 10.5.Isotope effect -- 10.5.1.Polaronic state -- 10.5.2.Isotopic dependence of the penetration depth -- 10.6.Mechanism of high Tc -- 10.7.Proposed experiment -- 11.1."Pseudogap" state: main properties -- 11.1.1.Anomalous diamagnetism above Tc -- 11.1.2.Energy gap -- 11.1.3.Isotope effect -- 11.1.4."Giant" Josephson effect -- 11.1.5.Transport properties -- 11.2.Inhomogeneous state -- 11.2.1.Qualitative picture -- 11.2.2.The origin of inhomogeneity -- 11.2.3.Percolative transition -- 11.2.4.Inhomogeneity: experimental data -- 11.3.Energy scales -- 11.3.1.Highest-energy scale (T*) -- 11.3.2.Diamagnetic transition (T*c) -- 11.3.3.Resistive transition (Tc) -- 11.4.Theory -- 11.4.1.General equations -- 11.4.2.Diamagnetism -- 11.4.3.Transport properties; "giant" Josephson effect -- 11.4.4.Isotope effect -- 11.5.Other systems -- 11.5.1.Borocarbides -- 11.5.2.Granular superconductors; Pb+Ag system -- 11.6.Ordering of dopants and potential for room-temperature superconductivity -- 11.7.Remarks -- 12.1.Introduction -- 12.2.Electronic structure and doping -- 12.2.1.Structure -- 12.2.2.Magnetic order -- 12.2.3.Double-exchange mechanism. -- 12.2.4.Colossal magnetoresistance (CMR) -- 12.3.Percolation phenomena -- 12.3.1.Low doping: transition to the ferromagnetic state at low temperatures -- 12.3.2.Percolation threshold -- 12.3.3.Increase in temperature and percolative transition -- 12.3.4.Experimental data -- 12.3.5.Large doping -- 12.4.Main interactions: Hamiltonian -- 12.5.Ferromagnetic metallic state -- 12.5.1.Two-band spectrum -- 12.5.2.Heat capacity -- 12.5.3.Isotope substitution -- 12.5.4.Optical properties -- 12.6.Insulating phase -- 12.6.1.Parent compound -- 12.6.2.Low doping: polarons -- 12.7.Metallic A-phase: S-N-S Josephson effect -- 12.7.1.Magnetic structure -- 12.7.2.Josephson contact with the A-phase barrier -- 12.8.Discussion: manganites versus cuprates -- 13.1.Fe-based pnictide and chalcogenide superconductors -- 13.2.Magnesium diboride: MgB2 -- 13.3.A-15 structure superconductors -- 13.4.Granular superconductors -- 13.5.Sr2RuO4: a very novel superconductor -- 13.6.Ruthenium cuprates -- 13.7.Intercalated nitrides: self-supported superconductivity -- 14.1.History -- 14.2.Organic superconductors: structure, properties -- 14.3.Intercalated materials -- 14.4.Fullerides -- 14.5.Small-scale organic superconductivity -- 14.6.Pair correlation in aromatic molecules -- 15.1.Clusters: shell structure -- 15.2.Pair correlation -- 15.2.1.Qualitative picture -- 15.2.2.Main equations: critical temperature -- 15.2.3.Energy spectrum; fluctuations -- 15.3.How to observe the phenomenon? -- 15.4.Cluster-based tunneling network: macroscopic superconductivity -- 15.5.Cluster crystals -- Appendix A: Diabatic representation -- Appendix B: Dynamic Jahn-Teller effect.
- Subject(s)
- ISBN
- 9780199652556 (hbk.)
0199652554 (hbk.) - Note
- "The first edition of our book Mechanisms of conventional and high Tc superconductivity was published in 1993"--p. [vii].
- Bibliography Note
- Includes bibliographical references (pages [233]-254) and index.
- Source of Acquisition
- Purchased with funds from the Paterno Libraries Endowment; 2014
- Endowment Note
- Paterno Libraries Endowment
View MARC record | catkey: 14700443