Modeling and optimization of LCD optical performance / Dmitry A. Yakovlev, Vladimir G. Chigrinov, Hoi-Sing Kwok
- Author:
- Yakovlev, Dmitry A.
- Published:
- Chichester : Wiley-Blackwell, 2015.
- Physical Description:
- 1 online resource : illustrations
- Additional Creators:
- Chigrinov, V. G. (Vladimir G.) and Kwok, Hoi-Sing
Access Online
- Series:
- Contents:
- Machine generated contents note: 1.1.Homogeneous Waves in Isotropic Media -- 1.1.1.Plane Waves -- 1.1.2.Polarization. Jones Vectors -- 1.1.3.Coordinate Transformation Rules for Jones Vectors. Orthogonal Polarizations. Decomposition of a Wave into Two Orthogonally Polarized Waves -- 1.2.Interface Optics for Isotropic Media -- 1.2.1.Fresnel's Formulas. Snell's Law -- 1.2.2.Reflection and Transmission Jones Matrices for a Plane Interface between Isotropic Media -- 1.3.Wave Propagation in Anisotropic Media -- 1.3.1.Wave Equations -- 1.3.2.Waves in a Uniaxial Layer -- 1.3.3.A Simple Birefringent Layer and Its Principal Axes -- 1.3.4.Transmission Jones Matrices of a Simple Birefringent Layer at Normal Incidence -- 1.3.5.Linear Retarders -- 1.3.6.Jones Matrices of Absorptive Polarizers. Ideal Polarizer -- 1.4.Jones Calculus -- 1.4.1.Basic Principles of the Jones Calculus -- 1.4.2.Three Useful Theorems for Transmissive Systems -- 1.4.3.Reciprocity Relations. Jones's Reversibility Theorem -- 1.4.4.Theorem of Polarization Reversibility for Systems Without Diattenuation -- 1.4.5.Particular Variants of Application of the Jones Calculus. Cartesian Jones Vectors for Wave Fields in Anisotropic Media -- References -- 2.1.Jones Matrix and Eigenmodes of a Liquid Crystal Layer with an Ideal Twisted Structure -- 2.2.LCD Optics and the Gooch-Tarry Formulas -- 2.3.Interactive Simulation -- 2.4.Parameter Space -- References -- 3.1.General Optical Equivalence Theorem -- 3.2.Optical Equivalence for the Twisted Nematic Liquid Crystal Cell -- 3.3.Polarization Conserving Modes -- 3.3.1.LP1 Modes -- 3.3.2.LP2 Modes -- 3.3.3.LP3 Modes -- 3.3.4.CP Modes -- 3.4.Application to Nematic Bistable LCDs -- 3.4.1.2π Bistable TN Displays -- 3.4.2.π Bistable TN Displays -- 3.5.Application to Reflective Displays -- 3.6.Measurement of Characteristic Parameters of an LC Cell -- 3.6.1.Characteristic Angle Ω -- 3.6.2.Characteristic Phase Γ -- References -- 4.1.Optimization of LCD Performance in Various Electro-optical Modes -- 4.1.1.Electrically Controlled Birefringence -- 4.1.2.Twist Effect -- 4.1.3.Supertwist Effect -- 4.1.4.Optimization of Optical Performance of Reflective LCDs -- 4.2.Transflective LCDs -- 4.2.1.Dual-Mode Single-Cell-Gap Approach -- 4.2.2.Single-Mode Single-Cell-Gap Approach -- 4.3.Total Internal Reflection Mode -- 4.4.Ferroelectric LCDs -- 4.4.1.Basic Physical Properties -- 4.4.2.Electro-optical Effects in FLC Cells -- 4.5.Birefringent Color Generation in Dichromatic Reflective FLCDs -- References -- 5.1.Some Definitions and Relations from Matrix Algebra -- 5.1.1.General Definitions -- 5.1.2.Some Important Properties of Matrix Products -- 5.1.3.Unitary Matrices. Unimodular Unitary 2 x 2 Matrices. STU Matrices -- 5.1.4.Norms of Vectors and Matrices -- 5.1.5.Kronecker Product of Matrices -- 5.1.6.Approximations -- 5.2.Some Radiometric Quantities. Conventions -- 5.3.Stokes Vectors of Plane Waves and Collimated Beams Propagating in Isotropic Nonabsorbing Media -- 5.4.Jones Vectors -- 5.4.1.Fitted-to-Electric-Field Jones Vectors and Fitted-to-Transverse-Component-of-Electric-Field Jones Vectors -- 5.4.2.Fitted-to-Irradiance Jones Vectors -- 5.4.3.Conventional Jones Vectors -- References -- 6.1.Polarization Transfer Factor of an Optical System -- 6.2.Optics of LC Cells in Terms of Polarization Transport Coefficients -- 6.2.1.Polarization-Dependent Losses and Depolarization. Unpolarized Transmittance -- 6.2.2.Rotations -- 6.2.3.Symmetry of the Sample -- 6.3.Retroreflection Geometry -- 6.4.Applications of Polarization Transport Coefficients in Optimization of LC Devices -- 6.5.Evaluation of Ultimate Characteristics of an LCD that can be Attained by Fitting the Compensation System. Modulation Efficiency of LC Layers -- References -- 7.1.Physical Models of the Light-Layered System Interaction Used in Modeling the Optical Behavior of LC Devices. Plane-Wave Approximations. Transfer Channel Approach -- 7.2.Transfer Matrix Technique and Adding Technique -- 7.2.1.Transfer Matrix Technique -- 7.2.2.Adding Technique -- 7.3.Optical Models of Some Elements of LCDs -- References -- 8.1.General Properties of the Electromagnetic Field Induced by a Plane Monochromatic Wave in a Linear Stratified Medium -- 8.1.1.Maxwell's Equations and Constitutive Relations -- 8.1.2.Plane Waves -- 8.1.3.Field Geometry -- 8.2.Transmission and Reflection Operators of Fragments (TR Units) of a Stratified Medium and Their Calculation -- 8.2.1.EW Jones Vector. EW Jones Matrices. Transmission and Reflection Operators -- 8.2.2.Calculation of Overall Transmission and Overall Reflection Operators for Layered Systems by Using Transfer Matrices -- 8.3.Berreman's Method -- 8.3.1.Transfer Matrices -- 8.3.2.Transfer Matrix of a Homogeneous Layer -- 8.3.3.Transfer Matrix of a Smoothly Inhomogeneous Layer. Staircase Approximation -- 8.3.4.Coordinate Systems -- 8.4.Simplifications, Useful Relations, and Advanced Techniques -- 8.4.1.Orthogonality Relations and Other Useful Relations for Eigenwave Bases -- 8.4.2.Simple General Formulas for Transmission Operators of Interfaces -- 8.4.3.Calculation of Transmission and Reflection Operators of Layered Systems by Using the Adding Technique -- 8.5.Transmissivities and Reflectivities -- 8.6.Mathematical Properties of Transfer Matrices and Transmission and Reflection EW Jones Matrices of Lossless Media and Reciprocal Media -- 8.6.1.Properties of Matrix Operators for Nonabsorbing Regions -- 8.6.2.Properties of Matrix Operators for Reciprocal Regions -- 8.7.Calculation of EW 4 x 4 Transfer Matrices for LC Layers -- 8.8.Transformation of the Elements of EW Jones Vectors and EW Jones Matrices Under Changes of Eigenwave Bases -- 8.8.1.Coordinates of the EW Jones Vector of a Wave Field in Different Eigenwave Bases -- 8.8.2.EW Jones Operators in Different Eigenwave Bases -- References -- 9.1.General Aspects of EWB Specification. EWB-generating routines -- 9.2.Isotropic Media -- 9.3.Uniaxial Media -- 9.4.Biaxial Media -- References -- 10.1.EW Stokes Vectors and EW Mueller Matrices -- 10.2.Calculation of the EW Mueller Matrices of the Overall Transmission and Reflection of a System Consisting of "Thin" and "Thick" Layers -- 10.3.Main Routines of LMOPTICS -- 10.3.1.Routines for Computing 4 x 4 Transfer Matrices and EW Jones Matrices -- 10.3.2.Routines for Computing EW Mueller Matrices -- 10.3.3.Other Useful Routines -- References -- 11.1.Application of Jones Matrix Methods to Inhomogeneous LC Layers -- 11.1.1.Calculation of Transmission Jones Matrices of LC Layers Using the Classical Jones Calculus -- 11.1.2.Extended Jones Matrix Methods -- 11.2.NBRA. Basic Differential Equations -- 11.3.NBRA. Numerical Methods -- 11.3.1.Approximating Multilayer Method -- 11.3.2.Discretization Method -- 11.3.3.Power Series Method -- 11.4.NBRA. Analytical Solutions -- 11.4.1.Twisted Structures -- 11.4.2.Nontwisted Structures -- 11.4.3.NBRA and GOA. Adiabatic and Quasiadiabatic Approximations -- 11.5.Effect of Errors in Values of the Transmission Matrix of the LC Layer on the Accuracy of Modeling the Transmittance of the LCD Panel -- References -- 12.1.Theory of STUM Approximation -- 12.2.Exact and Approximate Expressions for Transmission Operators of Interfaces at Normal Incidence -- 12.3.Polarization Jones Matrix of an Inhomogeneous Nonabsorbing Anisotropic Layer with Negligible Bulk Reflection at Normal Incidence. Simple Representations of Polarization Matrices of LC Layers at Normal Incidence -- 12.4.Immersion Model of the Polarization-Converting System of an LCD -- 12.5.Determining Configurational and Optical Parameters of LC Layers With a Twisted Structure: Spectral Fitting Method -- 12.5.1.How to Bring Together the Experiment and Unitary Approximation -- 12.5.2.Parameterization and Solving the Inverse Problem -- 12.5.3.Appendix to Section -- 12.6.Optimization of Compensation Systems for Enhancement of Viewing Angle Performance of LCDs -- References -- 13.1.Virtual Microscope -- 13.2.Directional Illumination and Diffuse Illumination -- References -- A.1.Introductory Remarks -- A.2.Fast LCD -- A.2.1.TN Cell -- A.2.2.Effect of d/p Ratio -- A.2.3.Effect of K22/K11 -- A.2.4.Effect of K33/K11 -- A.2.5.Effect of Δepsilon -- A.2.6.Effect of γ1 -- A.2.7.Effect of Anchoring Strength W -- A.2.8.Optimized TN Cell With Fast Response Time -- A.2.9.Other LC Modes -- A.3.Color LCD -- A.3.1.The Super-Twisted Nematic Cell -- A.3.2.STN Birefringent Colors in Transmissive and Reflective Modes -- A.4.Transflective LCD -- A.4.1.Vertical Aligned Nematic Cell -- A.5.Switchable Viewing Angle LCD -- A.6.Optimal e-paper Configurations -- A.7.Color Filter Optimization -- References -- B.1.Conservation Law for Energy Flux -- B.2.Lorentz's Lemma -- B.3.Nonexponential Waves -- B.4.To the Power Series Method (Section 11.3.3) -- B.5.One of the Ways to Obtain the Explicit Expressions for Transmission Jones Matrices of an Ideal Twisted LC Layer -- Reference.
- Subject(s):
- ISBN:
- 9781118706732 electronic bk.
1118706730 electronic bk.
9781118706749 electronic bk.
1118706749 electronic bk.
9780470689141
0470689145
9781322999760 (MyiLibrary)
1322999767 (MyiLibrary) - Note:
- AVAILABLE ONLINE TO AUTHORIZED PSU USERS.
- Bibliography Note:
- Includes bibliographical references and index.
View MARC record | catkey: 15000882