Validation and Analysis of SRTM and VCL Data Over Tropical Volcanoes
- Author:
- Mouginis-Mark, Peter J.
- Published:
- June 14, 2004.
- Physical Description:
- 1 electronic document
- Access Online:
- hdl.handle.net
- Restrictions on Access:
- Unclassified, Unlimited, Publicly available.
- Summary:
- The focus of our investigation was on the application of digital topographic data in conducting first-order volcanological and structural studies of tropical volcanoes, focusing on the Java, the Philippines and the Galapagos Islands. Kilauea volcano, Hawaii, served as our test site for SRTM data validation. Volcanoes in humid tropical environments are frequently cloud covered, typically densely vegetated and erode rapidly, so that it was expected that new insights into the styles of eruption of these volcanoes could be obtained from analysis of topographic data. For instance, in certain parts of the world, such as Indonesia, even the regional structural context of volcanic centers is poorly known, and the distribution of volcanic products (e.g., lava flows, pyroclastic flows, and lahars) are not well mapped. SRTM and Vegetation Canopy Lidar (VCL) data were expected to provide new information on these volcanoes. Due to the cancellation of the VCL mission, we did not conduct any lidar studies during the duration of this project. Digital elevation models (DEMs) such as those collected by SRTM provide quantitative information about the time-integrated typical activity on a volcano and allow an assessment of the spatial and temporal contributions of various constructional and destructional processes to each volcano's present morphology. For basaltic volcanoes, P_c?w!m-d and Garbed (2000) have shown that gradual slopes (less than 5 deg.) occur where lava and tephra pond within calderas or in the saddles between adjacent volcanoes, as well as where lava deltas coalesce to form coastal plains. Vent concentration zones (axes of rift zones) have slopes ranging from 10 deg. to 12 deg. Differential vertical growth rates between vent concentration zones and adjacent mostly-lava flanks produce steep constructional slopes up to 40". The steepest slopes (locally approaching 90 deg.) are produced by fluvial erosion, caldera collapse, faulting, and catastrophic avalanches, all of which are usually identifiable. Due to the delay in the release of the SRTM data following the February 2000 flight, a significant part of our effort was devoted to the analog studies of the SRTM topographic data using topographic data from airborne interferometric radars. As part of the original SRTM Science Team, we proposed four study sites (Kilauea, Hawaii; Mt. Pinatubo, Philippines; Cerro Am1 and Femandina volcanoes, Galapagos Islands; and Tengger caldera, Java) where we could conduct detailed geologic studies to evaluate the uses of SRTM data for the analysis of lava flows, lahars, erosion of ash deposits, and an evaluation of the structural setting of the volcanoes. Only near the end of this project was one of these SRTM Science Team products (Luzon Island, the Philippines) released to the community, and we only had limited time to work on these data.
- Collection:
- NASA Technical Reports Server (NTRS) Collection.
- Note:
- Document ID: 20040075898.
- Terms of Use and Reproduction:
- No Copyright.
- Access Online:
- hdl.handle.net
View MARC record | catkey: 15635650