Information Theoretic Extraction of EEG Features for Monitoring Subject Attention
- Author:
- Principe, Jose C.
- Published:
- September 2000.
- Physical Description:
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access:
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary:
- The goal of this project was to test the applicability of information theoretic learning (feasibility study) to develop new brain computer interfaces (BCI). The difficulty to BCI comes from several aspects: (1) the effective data collection of signals related to cognition; (2) the preprocessing of these signals to extract the relevant information; (3) the pattern recognition methodology to detect reliably the signals related to cognitive states. We only addressed the two last aspects in this research. We started by evaluating an information theoretic measure of distance (Bhattacharyya distance) for BCI performance with good predictive results. We also compared several features to detect the presence of event related desynchronization (ERD) and synchronization (ERS), and concluded that at least for now the bandpass filtering is the best compromise between simplicity and performance. Finally, we implemented several classifiers for temporal - pattern recognition. We found out that the performance of temporal classifiers is superior to static classifiers but not by much. We conclude by stating that the future of BCI should be found in alternate approaches to sense, collect and process the signals created by populations of neurons. Towards this goal, cross-disciplinary teams of neuroscientists and engineers should be funded to approach BCIs from a much more principled view point.
- Other Subject(s):
- Collection:
- NASA Technical Reports Server (NTRS) Collection.
- Note:
- Document ID: 20000099713.
- Terms of Use and Reproduction:
- No Copyright.
View MARC record | catkey: 15640533