Optimal lunar trajectories for a combined chemical-electric propulsion spacecraft
- Author:
- Kluever, Craig A.
- Published:
- Jan 1, 1995.
- Physical Description:
- 1 electronic document
- Access Online:
- hdl.handle.net
- Restrictions on Access:
- Unclassified, Unlimited, Publicly available.
- Summary:
- Spacecraft which utilize electric propulsion (EP) systems are capable of delivering a greater payload fraction compared to spacecraft using conventional chemical propulsion systems. Several researchers have investigated numerous applications of low-thrust EP including a manned Mars mission, scientific missions to the outer planets, and lunar missions. In contrast, the study of optimal combined high and low-thrust spacecraft trajectories has been limited. In response to the release of NASA's 1994 Announcement of Opportunity (AO) for Discovery class interplanetary exploration missions, a preliminary investigation of a lunar comet rendezvous mission using a solar electric propulsion (SEP) spacecraft was performed. The Discovery mission (eventually named Diana) was envisioned to be a two-phase scientific exploration mission: the first phase involved exploration of the moon and second phase involved rendezvous with a comet. The initial phase began with a chemical propulsion translunar injection and chemical insertion into a lunar orbit, followed by a low-thrust SEP transfer to a circular, polar, low-lunar orbit (LLO). After scientific data was collected at the moon, the SEP spacecraft performed a spiral lunar escape maneuver to begin the interplanetary leg of the mission. After escape from the Earth-moon system, the SEP spacecraft maneuvered in interplanetary space and performed a rendezvous with a short period comet. An initial study that demonstrated the feasibility of using EP for the lunar and comet orbit transfer was performed under the grant NAG3-1581. This final report is a continuation of the initial research efforts in support of the Discovery mission proposal that was submitted to NASA Headquarters in October 1994. Section 2 discusses the lunar orbit transfer phase of the Diana mission which involves both chemical and electric propulsion stages. Section 3 discusses the chemical lunar orbit insertion (LOI) burn optimization. Finally, section 4 presents the conclusions of this research effort.
- Collection:
- NASA Technical Reports Server (NTRS) Collection.
- Note:
- Document ID: 19960003222.
Accession ID: 96N13231.
NAS 1.26:199632.
NASA-CR-199632.
NIPS-95-05613. - Terms of Use and Reproduction:
- No Copyright.
- Access Online:
- hdl.handle.net
View MARC record | catkey: 15652254