Partial Spreading of a Laser Beam into a Light Sheet by Shock Waves and Its Use as a Shock Detection Technique
- Author
- Panda, J.
- Published
- May 1, 1994.
- Physical Description
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary
- It is observed that when a laser beam is allowed to fall on a shock surface at a grazing incidence, a small part of the beam spreads out in a thin, diverging sheet of light normal to the surface, and both upstream and downstream of the shock. The phenomenon is visualized by observing a cross section of the light sheet on a screen placed normal to the laser path after it touches a shock. The light sheet disappears when the beam is moved to any other locations where there is no shock or the beam pierces the shock surface, i.e., at a non-grazing incidence. The spread angle of the light sheet is considerably higher than the angle by which the beam may bend as it passes through the shock, which produces a small difference of refractive index. Various details indicate that the spread light is a result of diffraction of a small part of the laser beam by the shock whose thickness is nearly the same as that of the laser wavelength. Shocks formed in underexpanded free jets of fully expanded Mach numbers 1.4 to 1.8 are used for this experiment. The above optical phenomenon is used as the basis of a novel shock detection technique which depends on sensing the spread light using a photomultiplier tube (PMT). The locations of the shock surfaces in the underexpanded supersonic jet, obtained using this technique, match with those inferred from the Schlieren photographs and velocity measurements. Moreover, if the shock oscillates, a periodic PMT signal is obtained which provides information about the frequency and amplitude of shock motion.
- Other Subject(s)
- Collection
- NASA Technical Reports Server (NTRS) Collection.
- Note
- Document ID: 19940030417.
Accession ID: 94N34923.
NAS 1.26:195329.
NASA-CR-195329.
E-8809. - Terms of Use and Reproduction
- Copyright, Distribution under U.S. Government purpose rights.
View MARC record | catkey: 15658191