Actions for On the physics of waves in the solar atmosphere : Wave heating and wind acceleration
On the physics of waves in the solar atmosphere : Wave heating and wind acceleration
- Author
- Musielak, Z. E.
- Published
- Mar 1, 1994.
- Physical Description
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary
- This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.
- Other Subject(s)
- Collection
- NASA Technical Reports Server (NTRS) Collection.
- Note
- Document ID: 19940020782.
Accession ID: 94N25264.
NASA-CR-195197.
NAS 1.26:195197. - Terms of Use and Reproduction
- No Copyright.
View MARC record | catkey: 15660037