Protein crystal growth (5-IML-1).
- Author
- Bugg, Charles E.
- Published
- Feb 1, 1992.
- Physical Description
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary
- Proteins (enzymes, hormones, immunoglobulins) account for 50 pct. or more of the dry weight of most living systems. A detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting projects have terminated at the crystal growth stage. In principle, there are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor is the elimination of density driven convective flow. Other factors that can be controlled in the absence of gravity is the sedimentation of growing crystals in a gravitational field, and the potential advantage of doing containerless crystal growth. As a result of these theories and facts, one can readily understand why the microgravity environment of an Earth orbiting vehicle seems to offer unique opportunities for the protein crystallographer. This perception has led to the establishment of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project. The results of experiments already performed during STS missions have in many cases resulted in large protein crystals which are structurally correct. Thus, the near term objective of the PCG/ME project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.
- Other Subject(s)
- Collection
- NASA Technical Reports Server (NTRS) Collection.
- Note
- Document ID: 19920014391.
Accession ID: 92N23634.
NASA. Marshall Space Flight Center, First International Microgravity Laboratory Experiment Descriptions; p 219-224. - Terms of Use and Reproduction
- No Copyright.
View MARC record | catkey: 15675893