Actions for Linear and nonlinear dynamic analysis by boundary element method
Linear and nonlinear dynamic analysis by boundary element method
- Author
- Ahmad, Shahid
- Published
- Oct 1, 1991.
- Physical Description
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary
- An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons with available analytical and numerical results, the stability and high accuracy of these dynamic analysis techniques are established.
- Other Subject(s)
- Collection
- NASA Technical Reports Server (NTRS) Collection.
- Note
- Document ID: 19920010307.
Accession ID: 92N19549.
NAS 1.26:187228.
NASA-CR-187228. - Terms of Use and Reproduction
- No Copyright.
View MARC record | catkey: 15677024