Measurements and mechanisms of localized aqueous corrosion in aluminum-lithium-copper alloys
- Author:
- Wall, Douglas
- Published:
- Jun 30, 1991.
- Physical Description:
- 1 electronic document
- Additional Creators:
- Stoner, Glenn E.
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access:
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary:
- Summary information is included for electrochemical aspects of stress corrosion cracking in alloy 2090 and an introduction to the work to be initiated on the new X2095 (Weldalite) alloy system. Stress corrosion cracking (SCC) was studied in both S-T and L-T orientations in alloy 2090. A constant load TTF test was performed in several environments with a potentiostatically applied potential. In the same environments the electrochemical behavior of phases found along subgrain boundaries was assessed. It was found that rapid failure due to SCC occurred when the following criteria was met: E(sub BR,T1) is less than E(sub applied) is less than E(sub Br, matrix phase). Although the L-T orientation is usually considered more resistant to SCC, failures in this orientation occurred when the stated criteria was met. This may be due to the relatively isotropic geometry of the subgrains which measure approximately 12 to 25 microns in diameters. Initial studies of alloy X2095 includes electrochemical characterization of three compositional variations each at three temperatures. The role of T(sub 1) dissolution in SCC behavior is addressed using techniques similar to those used in the research of 2090 described. SCC susceptibility is also studied using alternate immersion facilities at Reynolds Metals Corporation. Pitting is investigated in terms of stability, role of precipitate phases and constituent particles, and as initiation sites for SCC. In all research endeavors, attempts are made to link electrochemistry to microstructure. Previous work on 2090 provides a convenient basis for comparison since both alloys contain T(sub 1) precipitates but with different distributions. In 2090 T(sub 1) forms preferentially on subgrain boundaries whereas in X2095 the microstructure appears to be more homogeneous with finer T(sub 1) particles. Another point for comparison is the delta prime strengthening phase found in 2090 but absent in X2095.
- Other Subject(s):
- Collection:
- NASA Technical Reports Server (NTRS) Collection.
- Note:
- Document ID: 19910017976.
Accession ID: 91N27290.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST); p 130-148. - Terms of Use and Reproduction:
- No Copyright.
View MARC record | catkey: 15680147