Adaptive Strategies for Controls of Flexible Arms
- Author
- Yuan, Bau-San
- Published
- Apr 1, 1989.
- Physical Description
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary
- An adaptive controller for a modern manipulator has been designed based on asymptotical stability via the Lyapunov criterion with the output error between the system and a reference model used as the actuating control signal. Computer simulations were carried out to test the design. The combination of the adaptive controller and a system vibration and mode shape estimator show that the flexible arm should move along a pre-defined trajectory with high-speed motion and fast vibration setting time. An existing computer-controlled prototype two link manipulator, RALF (Robotic Arm, Large Flexible), with a parallel mechanism driven by hydraulic actuators was used to verify the mathematical analysis. The experimental results illustrate that assumed modes found from finite element techniques can be used to derive the equations of motion with acceptable accuracy. The robust adaptive (modal) control is implemented to compensate for unmodelled modes and nonlinearities and is compared with the joint feedback control in additional experiments. Preliminary results show promise for the experimental control algorithm.
- Other Subject(s)
- Collection
- NASA Technical Reports Server (NTRS) Collection.
- Note
- Document ID: 19900004467.
Accession ID: 90N13783.
NASA-CR-185868.
NAS 1.26:185868. - Terms of Use and Reproduction
- No Copyright.
View MARC record | catkey: 15688076