Radiative transfer in planetary atmospheres
- Author:
- Irvine, William M.
- Published:
- Aug 1, 1988.
- Physical Description:
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access:
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary:
- Rheoretical techniques and observations at millimeter wavelengths are combined to study the atmosphere of planets and comets, planetary and satellite regoliths, and planetary rings. Analysis of the very high quality data on the 18 cm OH line observed in recent comets continued. The high spectral resolution and high signal-to-noise make these lines ideal for study of the kinematics in cometary comae. A model of the collisional quenching of the inversion of the lambda doublet responsible for the OH radio emission has been developed by P. Schloerb. For conditions appropriate to Halley's Comet, collisional quenching should lead radio observers to systematically underestimate the OH parent production rate by a factor of approximately 3 relative to its actual value, which is very consistent with differences observed between radio and ultraviolet-derived production rates. Modeling is likewise continuing for the profiles observed in the lowest rotational transition of HCN in Comet Halley in order to better estimate the excitation and hence the abundance of HCN, as well as the kinematics of parent molecules in the coma. A collaborative program to combine data from the 14 m antenna with interferometric data abtained at the Hat Creek Radio Observatory is allowing aperture synthesis mapping of Venus in the CO J=1-0 line.
- Other Subject(s):
- Collection:
- NASA Technical Reports Server (NTRS) Collection.
- Note:
- Document ID: 19890007285.
Accession ID: 89N16656.
NASA, Washington, Reports of Planetary Astronomy,; p 63-64. - Terms of Use and Reproduction:
- No Copyright.
View MARC record | catkey: 15691952