A second-order accurate kinetic-theory-based method for inviscid compressible flows
- Author:
- Deshpande, Suresh M.
- Published:
- Dec 1, 1986.
- Physical Description:
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access:
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary:
- An upwind method for the numerical solution of the Euler equations is presented. This method, called the kinetic numerical method (KNM), is based on the fact that the Euler equations are moments of the Boltzmann equation of the kinetic theory of gases when the distribution function is Maxwellian. The KNM consists of two phases, the convection phase and the collision phase. The method is unconditionally stable and explicit. It is highly vectorizable and can be easily made total variation diminishing for the distribution function by a suitable choice of the interpolation strategy. The method is applied to a one-dimensional shock-propagation problem and to a two-dimensional shock-reflection problem.
- Other Subject(s):
- Collection:
- NASA Technical Reports Server (NTRS) Collection.
- Note:
- Document ID: 19870009350.
Accession ID: 87N18783.
L-16050.
NASA-TP-2613.
NAS 1.60:2613. - Terms of Use and Reproduction:
- No Copyright.
View MARC record | catkey: 15700076