The binding energy of H to a (10,0) carbon nanotube is calculated at 24, 50, and 100% coverage. Several different bonding configurations are considered for the 50% coverage case. Using the ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) approach, the average C-H bond energy for the most stable 50% coverage and for the 100% coverage are 57.3 and 38.6 kcal/mol, respectively. Considering the size of the bond energy of H2, these values suggest that it will be difficult to achieve 100% atomic H coverage on a (10,0) nanotube.