Polymeric Materials With Additives for Durability and Radiation Shielding in Space
- Author:
- Kiefer, Richard
- Published:
- [2011].
- Physical Description:
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access:
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary:
- Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.
- Other Subject(s):
- Collection:
- NASA Technical Reports Server (NTRS) Collection.
- Note:
- Document ID: 20120000900.
NF1676L-14040. - Terms of Use and Reproduction:
- Copyright, Distribution under U.S. Government purpose rights.
View MARC record | catkey: 15981178