Development Status of the J-2X.
- Author:
- Kynard, Mike
- Published:
- May 05, 2008.
- Physical Description:
- 1 electronic document
- Additional Creators:
- Vilja, John
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access:
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary:
- In June 2006, the NASA Marshall Space Flight Center (MSFC) and Pratt & Whitney Rocketdyne began development of an engine for use on the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The development program will be completed in December 2012 at the end of a Design Certification Review and after certification testing of two flight configuration engines. A team of over 600 people within NASA and Pratt & Whitney Rocketdyne are currently working to prepare for the fall 2008 Critical Design Review (CDR), along with supporting an extensive risk mitigation test program. The J-2X will power the Ares I upper stage and the Ares V earth departure stage (EDS). The initial use will be in the Ares I, used to launch the Orion crew exploration vehicle. In this application, it will power the upper stage after being sent aloft on a Space Shuttle-derived. 5-segment solid rocket booster first stage. In this mission. the engine will ignite at altitude and provide the necessary acceleration force to allow the Orion to achieve orbital velocity. The Ares I upper stage, along with the J-2X. will then be expended. On the Ares V. first stage propulsion is provided by five RS-68B engines and two 5-segment boosters similar to the Ares I configuration. In the Ares V mission. the J-2X is first started to power the EDS and its payload. the Altair lunar lander. into earth orbit, then shut-down and get prepared for its next start. The EDS/Altair will remain in a parking orbit, awaiting rendezvous and docking with Orion. Once the two spacecraft are mated, the J-2X will be restarted to achieve earth departure velocity. After powering the Orion and Altair, the EDS will be expended. By using the J-2X Engine in both applications, a significant infrastructure cost savings is realized. Only one engine development is required, and the sustaining engineering and flight support infrastructures can be combined. There is also flexibility for changing, the production and flight manifest because a single production line can support both missions with minimal differences between each engine configuration kit.
- Other Subject(s):
- Collection:
- NASA Technical Reports Server (NTRS) Collection.
- Note:
- Document ID: 20080032813.
Space Propulsion 2008/ESA, CNES, DLR, and other European Space Agencies; 5-9 May 2008; Heraklion; Greece. - Terms of Use and Reproduction:
- Copyright, Distribution as joint owner in the copyright.
View MARC record | catkey: 15999201