Preliminary Evaluation of the Spin and Recovery Characteristics of the Douglas XF3D-1 Airplane
- Author:
- Scher, Stanley H.
- Published:
- July 03, 1947.
- Physical Description:
- 1 electronic document
- Access Online:
- hdl.handle.net
- Restrictions on Access:
- Unclassified, Unlimited, Publicly available.
- Summary:
- A preliminary evaluation of the spin and recovery characteristics of the XF3D-1 airplane has been made, based primarily on the results of the free-spinning tunnel tests of a model which closely simulated the XF3D-1 in tail design, tail length, and mass loading. Estimates have been made of the rudder-pedal force that may be encountered in effecting recovery from a spin and of the spin recovery parachute requirements of the airplane for demonstration spins. The method of bail-out which should be used if it becomes necessary for the crew to abandon the airplane during a spin is indicated. It was indicated that the recovery characteristics of the XF3D-1 airplane in the clean condition for erect and inverted spins would be satisfactory for all loadings specified by the contractor as possible on the airplane. However, if a spin is inadvertently entered while the landing flaps are down, recovery may be slow. The slow-down brakes and the landing flaps should be retracted immediately upon the inception of a spinning condition, after which recovery from the spin should be attempted. The pedal force necessary to reverse the rudder during a spin will be within the physical capabilities of the pilot. Opening a 10-foot diameter parachute attached to the tail (laid-out-flat diameter, drag coefficient 0.7) or a 4.5-foot diameter parachute attached to the outboard wing tip will insure satisfactory spin recovery from demonstration spins. If it becomes necessary for the crew to abandon the airplane during a spin, they should leave from the outboard side of the cockpit.
- Collection:
- NASA Technical Reports Server (NTRS) Collection.
- Note:
- Document ID: 20050019396.
NACA-RM-L7F18. - Terms of Use and Reproduction:
- No Copyright.
- Access Online:
- hdl.handle.net
View MARC record | catkey: 16004701