Handbook of liquefied natural gas / Saeid Mokhatab, gas processing consultant, Canada [and three others].
- Published
- Amsterdam : Elsevier/Gulf Professional Publishing, 2014.
- Physical Description
- 1 online resource (617 pages) : illustrations
- Additional Creators
- Mokhatab, Saeid
Access Online
- Contents
- Machine generated contents note: 1.1.Introduction -- 1.2.Monetizing stranded gas -- 1.3.LNG characteristics -- 1.3.1.Basic properties -- 1.3.2.Thermodynamic properties -- 1.3.3.LNG safety -- 1.3.4.Units and conversion factors -- 1.4.Traditional LNG supply chain -- 1.4.1.LNG production plant -- 1.4.2.Liquefaction plant types -- 1.4.3.LNG train size -- 1.4.4.LNG loading -- 1.4.5.LNG transportation -- 1.4.6.LNG receiving terminals -- 1.5.Offshore LNG supply chain -- 1.5.1.FPSO -- 1.5.2.Offshore LNG regasification -- 1.5.3.Floating storage and regasification units (FSRU) -- 1.5.4.Gravity-based offshore regasification units -- 1.5.5.Heating value control in offshore LNG regasification plants -- 1.6.LNG environmental aspects -- 1.6.1.Emission sources -- 1.6.2.Near zero CO2 emission -- 1.6.3.Environmental impacts -- 1.6.4.LNG handling hazard and risks -- 1.6.5.LNG spill -- 1.6.6.Process heating and cooling -- 1.6.7.Waste water streams -- 1.7.Costs and economic implications of LNG facilities -- 1.7.1.LNG overall project costs -- 1.8.LNG contracts and project development -- 1.8.1.Evolution away from integrated LNG supply chains -- 1.8.2.Evolution of less-integrated LNG supply chains -- 1.8.3.Issue of open-access to regasification terminals -- 1.8.4.Project finance of LNG facilities -- 1.9.LNG trade -- 1.9.1.Global LNG market growth -- 1.9.2.LNG import markets -- 1.9.3.LNG export markets -- 1.9.4.LNG prices diverge from the three regional markets -- References -- 2.1.Introduction -- 2.2.LNG production plants -- 2.2.1.Inlet separation facility -- 2.2.2.Gas treatment section -- 2.2.3.NGL recovery unit -- 2.2.4.NGL fractionation unit -- 2.2.5.Natural gas liquefaction plant -- 2.2.6.Integrating NGL recovery and natural gas liquefaction plant -- 2.2.7.Nitrogen removal unit -- References -- 3.1.Introduction -- 3.2.Natural gas liquefaction technology -- 3.2.1.Liquefaction background -- 3.2.2.Liquefaction process selection criteria -- 3.2.3.Onshore natural gas liquefaction processes -- 3.2.4.Liquefaction in cold climates -- 3.3.Offshore natural gas liquefaction -- 3.3.1.Refrigeration cycles -- 3.3.2.Small to mid-scale liquefaction processes -- References -- 4.1.Introduction -- 4.2.Refrigeration/liquefaction cycle principles -- 4.2.1.Constant-temperature refrigeration cycle -- 4.2.2.Irreversible refrigeration cycle with finite heat transfer temperature differences -- 4.2.3.Refrigeration cycle between two varying temperatures -- 4.2.4.Liquefaction of gases -- 4.2.5.Ideal Linde-Hampson liquefiers -- 4.2.6.Ideal liquefiers with expanders -- 4.3.Refrigerant selections -- 4.3.1.Basic requirements on refrigerants -- 4.3.2.Type of refrigerants for refrigeration and liquefaction -- 4.3.3.Type of refrigerant mixtures -- 4.3.4.Choice of refrigerant mixture -- 4.4.Fundamentals of energy and exergy analysis -- 4.4.1.First law and second law of thermodynamics -- 4.4.2.Exergy analysis of different components of a cryogenic liquefaction system -- 4.4.3.Overall energy and exergy efficiency of a cryogenic liquefaction system -- 4.4.4.Energy and exergy analysis of an ideal Linde-Hampson liquefaction cycle -- 4.4.5.Exergy losses in a nonideal Linde-Hampson liquefaction cycle -- 4.4.5.Energy and exergy analyses of a nonideal Kapitza liquefaction system -- 4.4.6.Pinch analysis -- 4.5.Energy and exergy analyses of natural gas liquefaction cycles -- 4.5.1.Propane-precooling mixed refrigerant cycle (C3/MRC) -- 4.5.2.N2-CH4 expander liquefaction cycle -- 4.5.3.Cascade natural gas liquefaction cycle -- References -- 5.1.Introduction -- 5.2.Natural gas liquefaction cycle enhancement types -- 5.3.Energy consumption enhancement options by recovering process losses and waste heat -- 5.3.1.Expanders -- 5.3.2.Absorption chiller -- 5.4.Brief introduction to optimization -- 5.4.1.Conventional optimization methods -- 5.4.2.Genetic algorithm -- 5.4.3.Example of GA -- 5.4.4.Robust optimization methods -- 5.5.Liquefaction cycle optimization -- 5.5.1.Model development -- 5.5.2.Optimization approach -- 5.5.3.Optimization results -- 5.5.4.Second law efficiency -- 5.5.5.Effect of pinch temperature -- 5.6.Driver cycle optimization -- 5.6.1.Driver cycle optimization example -- 5.7.Mobile LNG plants optimal design challenges -- References -- 6.1.Introduction -- 6.2.Objectives of LNG plant automation -- 6.3.LNG plant process control/automation development and functionalities -- 6.3.1.Distributed control system -- 6.3.2.Intelligent field devices -- 6.3.3.Data historian and alarm management -- 6.3.4.Safety instrumented system -- 6.3.5.Inventory management -- 6.3.6.Asset management system -- 6.4.Process control of key units in LNG plants -- 6.4.1.Inlet facilities -- 6.4.2.NGL recovery unit -- 6.4.3.Fuel gas system -- 6.4.4.Liquefaction system -- 6.4.5.Storage and loading -- 6.5.Advanced process control and optimization of LNG plants -- 6.5.1.Model predictive control technology -- 6.5.2.Advanced process control implementation steps -- 6.5.3.Benefits and challenges in applying advanced process control in LNG plants -- 6.5.4.Advanced process control for individual units in LNG plants -- 6.6.Process control and automation in LNG import terminals -- 6.6.1.Basic process control systems -- 6.6.2.Terminal information management system -- 6.6.3.Optimization in LNG receiving terminal operations -- 6.7.Case study 1: advanced process control for APCI C3MR LNG process -- 6.7.1.Estimation of benefits from APC implementation -- 6.7.2.Design and implementation of LNG advanced process control -- References -- 7.1.Introduction -- 7.2.LNG plant normal operation -- 7.2.1.Slug catchers -- 7.2.2.Condensate stabilization unit -- 7.2.3.Acid gas removal unit -- 7.2.4.Sulfur recovery unit -- 7.2.5.Tail gas treating unit -- 7.2.6.Molecular sieve unit -- 7.2.7.NGL recovery unit -- 7.2.8.Liquefaction unit -- 7.2.9.LNG storage tanks -- 7.3.General startup sequence -- 7.3.1.Startup preparation -- 7.3.2.Startup work plan -- 7.3.3.Plant precommissioning -- 7.3.4.Plant commissioning -- 7.4.LNG plant startup -- 7.4.1.LNG plant utility and offsite -- 7.4.2.Acid gas removal unit -- 7.4.3.Molecular sieve unit -- 7.4.4.NGL recovery unit -- 7.4.5.Liquefaction unit -- 7.5.LNG plant shutdown -- 7.6.Performance and acceptance test -- 7.7.LNG regasification terminal normal operation -- 7.8.LNG regasification terminal startup -- 7.8.1.Preparation of flare -- 7.8.2.Cooldown of unloading system -- 7.8.3.Cooldown of storage tanks -- 7.8.4.BOG compressor/recondenser -- 7.8.5.LP LNG pump -- 7.8.6.HP LNG pumps and vaporizers -- 7.9.LNG regasification terminal shutdown -- References -- 8.1.Introduction -- 8.2.Life cycle dynamic simulation of LNG plants and import terminals -- 8.3.Dynamic modeling of LNG plants -- 8.3.1.Differences from steady state modeling -- 8.3.2.Dynamic modeling of individual equipment in LNG plants -- 8.3.3.Fidelity and details in LNG plant dynamic models -- 8.4.Applications of dynamic simulation in LNG -- 8.4.1.LNG process design studies -- 8.4.2.Compressor antisurge system design -- 8.4.3.Operability and controllability analysis -- 8.4.4.LNG plant startup simulations -- 8.4.5.Dynamic optimization of LNG plant design -- 8.4.6.Relief system design and safety scenarios -- 8.4.7.Plant troubleshooting and operational support -- 8.4.8.Plant production enhancements and debottlenecking -- 8.4.9.Control system checkout -- 8.4.10.Operator training simulator -- 8.4.11.Advanced process control development -- 8.5.Dynamic simulation of LNG import terminals -- 8.5.1.Dynamic modeling of LNG import terminals -- 8.5.2.Applications of dynamic simulation in LNG import terminals -- 8.5.3.Case study: LNG import terminal dynamic simulation -- References -- 9.1.Introduction -- 9.2.Hazards associated with LNG plants -- 9.2.1.Properties of spilled LNG -- 9.2.2.Ignition and fires -- 9.2.3.Vapor cloud explosions (NICE) -- 9.2.4.Cryogenic effects -- 9.2.5.Rollover -- 9.2.6.Rapid phase transition -- 9.2.7.Confined spaces -- 9.2.8.Chemical hazards -- 9.3.Safety features of LNG facilities -- 9.3.1.Safety of LNG storage tanks -- 9.3.2.Export and import plants: prevention and emergency systems -- 9.3.3.Safety of LNG unloading facilities -- 9.3.4.Protection features for LNG facilities -- 9.3.5.Safety features of LNG trucks -- 9.4.LNG risk analysis and controls -- 9.4.1.Risks to natural gas supply train -- 9.4.2.Government oversight -- 9.4.3.Codes and standards for LNG onshore (United States, Europe, Japan) -- 9.4.4.Technical feedback on codes -- 9.4.5.Codes and standards for LNG marine operations -- 9.4.6.LNG marine process safety management -- 9.4.7.Onshore and offshore plant differences -- 9.4.8.Onshore plants, process safety management systems -- 9.4.9.Risk analysis tools -- 9.4.10.Individual and societal risk analysis -- 9.4.11.Accident investigation techniques -- 9.4.12.Innovative systems under development -- 9.4.13.LNG risk analysis examples -- 9.4.14.Areas of LNG risk research -- 9.5.LNG security -- 9.5.1.Codes for security -- 9.5.2.Security vulnerability analysis (SVA) -- 9.5.3.Security vulnerability criticality index -- 9.5.4.Deciding on sufficiency of protective measures -- 9.5.5.Security of ships and land-based LNG facilities -- 9.5.6.Security initiatives, RAMCAP -- 9.5.7.Security of offshore and remote LNG facilities -- 9.5.8.Policy issues in LNG security -- References -- 10.1.Introduction -- 10.2.Innovations in LNG liquefaction -- 10.2.1.Larger trains -- 10.2.2.Main exchanger size -- 10.2.3.Liquefaction pressure -- 10.2.4.NGL recovery -- 10.2.5.Liquid expander -- 10.2.6.Matching drivers -- 10.2.7.Colder climate design -- 10.2.8.Future LNG plants -- 10.2.9.Gas turbines -- 10.2.10.Electric motor drive -- 10.2.11.Combined cycle power plant -- 10.2.12.Gas turbine inlet air chilling -- 10.2.13.Gas turbine exhaust duct firing -- 10.2.14.Modularization -- 10.3.LNG regasification -- 10.3.1.LNG industrial complex -- 10.3.2.LNG wobbe index -- 10.3.3.LNG and CNG vehicle fuel production -- and Contents note continued: 10.3.4.Integrated LNG regasification/power generation -- 10.3.5.LNG ambient air vaporizer -- 10.3.6.LNG new berthing designs: jetties and subsea pipelines -- 10.3.7.Offshore loading and unloading hose -- References -- 11.1.Introduction -- 11.2.Project management sequence -- 11.3.Success of engineering and design -- 11.4.Sponsor-contractor relationships -- 11.5.Defining business and project objectives -- 11.6.The project charter -- 11.7.Project risk assessments and risk management plans -- 11.8.Pre-FEED or conceptual risks -- 11.9.Key project management considerations for LNG projects -- 11.10.Scenario-based risk assessment -- 11.11.Technical and extreme risks (engineering and design) -- 11.12.Hazards and operability (HAZOP) studies -- 11.13.Project execution risks -- 11.14.Additional specific precommissioning risk assessments -- 11.15.Focusing planning stages on constructability -- 11.16.Developing a project constructability program -- 11.17.Project cost, schedule estimating, and modeling -- 11.18.Quality assurance, control, and inspection -- 11.19.Technology verification and risk-based verification -- 11.20.Engineering, procurement, and construction (EPC) contracts -- 11.21.EPC contractor selection and design competitions -- 11.22.Project management case study: Peru LNG -- 11.23.Ensuring continuity from project construction to plant operations -- 11.24.Integrated approaches to achieve high standards of performance -- 11.25.Conclusions -- References -- A1.1.Background of LNG -- A1.1.1.Why LNG? -- A1.1.2.Is LNG explosive? -- A1.1.3.What happens when LNG is warmed? -- A1.1.4.How much energy does it take to make LNG from natural gas'? -- A1.1.5.What are the advantages of storing gas as LNG'? -- A1.1.6.What is the history of LNG? -- A1.1.7.How can we keep LNG cold? -- A1.1.8.What are the differences between LNG and LPG or LNG and NGL? -- A1.1.9.What are the sources of LNG'? -- A1.2.LNG supply chain -- A1.2.1.Can LNG compete commercially with pipeline gas? -- A1.2.2.What are the commercial terms? -- A1.3.LNG regasification terminals -- A1.3.1.How are terminals designed? -- A1.4.Seismic design requirements -- A1.4.1.What gas markets do LNG regasification facilities serve? -- A1.4.2.How long can LNG be stored at LNG regasification terminals? -- A1.4.3.What is an LNG peak shaving plant? -- A1.4.4.Are there air emissions from an LNG regasification terminal? -- A1.5.LNG's safety records -- A1.5.1.What caused the Cleveland LNG tank failure in 1944? -- A1.5.2.What caused the Skikda liquefaction train fire in 2004? -- A1.5.3.What other serious incidents have occurred at LNG regasification terminals? -- A1.6.LNG carriers -- A1.6.1.What are the sizes of an LNG carrier and an LNG terminal? -- A1.6.2.Have LNG carrier groundings and collisions occurred? -- A1.7.LNG spills -- A1.7.1.What are the likely impacts of large LNG spills? -- A1.7.2.What should be done if there is spill from an LNG delivery truck? -- A1.7.3.What are the safety concerns of LNG spills? -- A1.7.4.How would an LNG facility be safeguarded against damages from an LNG spill? -- A1.8.Security for LNG facilities and ships -- A1.9.Risk of terrorism adds new dimension to LNG safety risk -- References -- A2.1.Introduction -- A2.2.Thermodynamics and topography of the phase behavior of LNG systems -- A2.3.Numerical procedures for calculating the multiphase equilibrium -- A2.3.1.Computational technique 1 -- A2.3.2.Computational technique 2 -- A2.4.Calculation of critical points at constant composition -- A2.4.1.Criticality conditions -- A2.4.2.Solution procedure -- A2.5.Calculation of K- and LCST-points at constant temperature -- A2.6.Calculation of phase envelopes -- A2.7.Thermodynamic models -- A2.7.1.The SRK equation of state -- A2.7.2.The PC-SAFT equation of state -- A2.8.Examples of application -- A2.8.1.The nitrogen + ethane system -- A2.8.2.The nitrogen + propane system -- A2.8.3.The nitrogen + methane + ethane system -- A2.8.4.The nitrogen + methane + propane system -- A2.8.5.The nitrogen + methane + n-butane system -- A2.8.6.The nitrogen + methane + ethane + propane system -- A2.8.7.The nitrogen + methane + ethane + propane + n-butane system -- References -- A3.1.Introduction -- A3.2.Flare and relief design considerations -- A3.2.1.Plot plant consideration -- A3.2.2.Process and control system considerations -- A3.2.3.System optimization -- A3.2.4.Administrative procedures -- A3.2.5.Design guidelines -- A3.2.6.Flare systems configurations -- A3.2.7.Material of construction -- A3.2.8.Maintenance consideration -- A3.3.Relief scenarios -- A3.4.Plant failure causes -- A3.4.1.Operator error -- A3.4.2.Loss of utilities -- A3.5.Equipment or operation failure -- A3.5.1.Reflux failure -- A3.5.2.Reboiler failure -- A3.5.3.Heat exchanger tube failure -- A3.5.4.Air fan condenser failure -- A3.5.5.Cooling water failure -- A3.5.6.Loss of inert gas -- A3.5.7.Instrument air failure -- A3.5.8.Loss of electric power -- A3.5.9.External fire -- A3.5.10.Depressurization -- A3.5.11.Thermal expansion -- A3.5.12.Thermal stress -- A3.5.13.Vacuum relief -- A3.5.14.Feed inlet control valves open -- A3.5.15.Blocked discharge -- A3.5.16.Amine absorber level control valve failure -- A3.5.17.Control valve bypasses -- A3.5.18.JT valves open during MCHE and MR compressor shutdown -- A3.5.19.Warm LNG excursion -- A3.6.Operator intervention -- A3.7.Operation relieves -- A3.7.1.Scrub column startup -- A3.7.2.Liquefaction train startup -- A3.7.3.NGL fractionation startup -- A3.7.4.Vapor return from LNG tankers -- A3.7.5.Vapor return from LPG tankers -- A3.7.6.Ship loading dock relief -- A3.8.Design pressure -- A3.8.1.Vacuum pressure -- A3.8.2.Maximum allowable working pressure -- A3.9.Design temperature -- A3.9.1.Minimum design temperature -- A3.10.Other design considerations -- A3.10.1.Use of restriction orifice -- A3.10.2.High integrity pressure protection systems -- A3.10.3.Purge gas supply to stack and pilots -- A3.10.4.Computer modeling.
- Summary
- Liquefied natural gas (LNG) is a commercially attractive phase of the commodity that facilitates the efficient handling and transportation of natural gas around the world. The LNG industry, using technologies proven over decades of development, continues to expand its markets, diversify its supply chains and increase its share of the global natural gas trade. The Handbook of Liquefied Natural Gas is a timely book as the industry is currently developing new large sources of supply and the technologies have evolved in recent years to enable offshore infrastructure to develop.
- Subject(s)
- Genre(s)
- ISBN
- 9780124045859
9780124046450 (e-book)
0124046452 (e-book)
0124045855 - Bibliography Note
- Includes bibliographical references and index.
View MARC record | catkey: 16832065